416 lines
15 KiB
Python
416 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import FunnelConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import (
|
|
TFFunnelBaseModel,
|
|
TFFunnelForMaskedLM,
|
|
TFFunnelForMultipleChoice,
|
|
TFFunnelForPreTraining,
|
|
TFFunnelForQuestionAnswering,
|
|
TFFunnelForSequenceClassification,
|
|
TFFunnelForTokenClassification,
|
|
TFFunnelModel,
|
|
)
|
|
|
|
|
|
class TFFunnelModelTester:
|
|
"""You can also import this e.g, from .test_modeling_funnel import FunnelModelTester"""
|
|
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
block_sizes=[1, 1, 2],
|
|
num_decoder_layers=1,
|
|
d_model=32,
|
|
n_head=4,
|
|
d_head=8,
|
|
d_inner=37,
|
|
hidden_act="gelu_new",
|
|
hidden_dropout=0.1,
|
|
attention_dropout=0.1,
|
|
activation_dropout=0.0,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=3,
|
|
initializer_std=0.02, # Set to a smaller value, so we can keep the small error threshold (1e-5) in the test
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
base=False,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.block_sizes = block_sizes
|
|
self.num_decoder_layers = num_decoder_layers
|
|
self.d_model = d_model
|
|
self.n_head = n_head
|
|
self.d_head = d_head
|
|
self.d_inner = d_inner
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout = hidden_dropout
|
|
self.attention_dropout = attention_dropout
|
|
self.activation_dropout = activation_dropout
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = 2
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.initializer_std = initializer_std
|
|
|
|
# Used in the tests to check the size of the first attention layer
|
|
self.num_attention_heads = n_head
|
|
# Used in the tests to check the size of the first hidden state
|
|
self.hidden_size = self.d_model
|
|
# Used in the tests to check the number of output hidden states/attentions
|
|
self.num_hidden_layers = sum(self.block_sizes) + (0 if base else self.num_decoder_layers)
|
|
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
|
|
# the last hidden state of the first block (which is the first hidden state of the decoder).
|
|
if not base:
|
|
self.expected_num_hidden_layers = self.num_hidden_layers + 2
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = FunnelConfig(
|
|
vocab_size=self.vocab_size,
|
|
block_sizes=self.block_sizes,
|
|
num_decoder_layers=self.num_decoder_layers,
|
|
d_model=self.d_model,
|
|
n_head=self.n_head,
|
|
d_head=self.d_head,
|
|
d_inner=self.d_inner,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout=self.hidden_dropout,
|
|
attention_dropout=self.attention_dropout,
|
|
activation_dropout=self.activation_dropout,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_std=self.initializer_std,
|
|
)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
)
|
|
|
|
def create_and_check_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = TFFunnelModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
|
|
|
|
config.truncate_seq = False
|
|
model = TFFunnelModel(config=config)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
|
|
|
|
config.separate_cls = False
|
|
model = TFFunnelModel(config=config)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.d_model))
|
|
|
|
def create_and_check_base_model(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = TFFunnelBaseModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
|
|
|
|
config.truncate_seq = False
|
|
model = TFFunnelBaseModel(config=config)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 3, self.d_model))
|
|
|
|
config.separate_cls = False
|
|
model = TFFunnelBaseModel(config=config)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, 2, self.d_model))
|
|
|
|
def create_and_check_for_pretraining(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = TFFunnelForPreTraining(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = TFFunnelForMaskedLM(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFFunnelForSequenceClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_multiple_choice(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = TFFunnelForMultipleChoice(config=config)
|
|
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
|
|
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
|
|
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
|
|
inputs = {
|
|
"input_ids": multiple_choice_inputs_ids,
|
|
"attention_mask": multiple_choice_input_mask,
|
|
"token_type_ids": multiple_choice_token_type_ids,
|
|
}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFFunnelForTokenClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
):
|
|
model = TFFunnelForQuestionAnswering(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFFunnelModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFFunnelModel,
|
|
TFFunnelForMaskedLM,
|
|
TFFunnelForPreTraining,
|
|
TFFunnelForQuestionAnswering,
|
|
TFFunnelForTokenClassification,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": (TFFunnelBaseModel, TFFunnelModel),
|
|
"fill-mask": TFFunnelForMaskedLM,
|
|
"question-answering": TFFunnelForQuestionAnswering,
|
|
"text-classification": TFFunnelForSequenceClassification,
|
|
"token-classification": TFFunnelForTokenClassification,
|
|
"zero-shot": TFFunnelForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFFunnelModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_pretraining(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
|
|
@require_tf
|
|
class TFFunnelBaseModelTest(TFModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFFunnelModelTester(self, base=True)
|
|
self.config_tester = ConfigTester(self, config_class=FunnelConfig)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_base_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_base_model(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|