325 lines
11 KiB
Python
325 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import unittest
|
|
|
|
from transformers import EsmConfig, is_tf_available
|
|
from transformers.testing_utils import require_tf, slow
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import numpy
|
|
import tensorflow as tf
|
|
|
|
from transformers.modeling_tf_utils import keras
|
|
from transformers.models.esm.modeling_tf_esm import (
|
|
TFEsmForMaskedLM,
|
|
TFEsmForSequenceClassification,
|
|
TFEsmForTokenClassification,
|
|
TFEsmModel,
|
|
)
|
|
|
|
|
|
# copied from tests.test_modeling_tf_roberta
|
|
class TFEsmModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = 13
|
|
self.seq_length = 7
|
|
self.is_training = True
|
|
self.use_input_mask = True
|
|
self.use_labels = True
|
|
self.vocab_size = 99
|
|
self.hidden_size = 32
|
|
self.num_hidden_layers = 2
|
|
self.num_attention_heads = 4
|
|
self.intermediate_size = 37
|
|
self.hidden_act = "gelu"
|
|
self.hidden_dropout_prob = 0.1
|
|
self.attention_probs_dropout_prob = 0.1
|
|
self.max_position_embeddings = 512
|
|
self.type_vocab_size = 16
|
|
self.type_sequence_label_size = 2
|
|
self.initializer_range = 0.02
|
|
self.num_labels = 3
|
|
self.num_choices = 4
|
|
self.scope = None
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = EsmConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
pad_token_id=1,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def prepare_config_and_inputs_for_decoder(self):
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = self.prepare_config_and_inputs()
|
|
|
|
config.is_decoder = True
|
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
|
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
return (
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
)
|
|
|
|
def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels):
|
|
model = TFEsmModel(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs)
|
|
|
|
result = model(input_ids)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_model_as_decoder(
|
|
self,
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
encoder_hidden_states,
|
|
encoder_attention_mask,
|
|
):
|
|
config.add_cross_attention = True
|
|
|
|
model = TFEsmModel(config=config)
|
|
inputs = {
|
|
"input_ids": input_ids,
|
|
"attention_mask": input_mask,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"encoder_attention_mask": encoder_attention_mask,
|
|
}
|
|
result = model(inputs)
|
|
|
|
inputs = [input_ids, input_mask]
|
|
result = model(inputs, encoder_hidden_states=encoder_hidden_states)
|
|
|
|
# Also check the case where encoder outputs are not passed
|
|
result = model(input_ids, attention_mask=input_mask)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = TFEsmForMaskedLM(config=config)
|
|
result = model([input_ids, input_mask])
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = TFEsmForTokenClassification(config=config)
|
|
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
result = model(inputs)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFEsmModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
TFEsmModel,
|
|
TFEsmForMaskedLM,
|
|
TFEsmForSequenceClassification,
|
|
TFEsmForTokenClassification,
|
|
)
|
|
if is_tf_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": TFEsmModel,
|
|
"fill-mask": TFEsmForMaskedLM,
|
|
"text-classification": TFEsmForSequenceClassification,
|
|
"token-classification": TFEsmForTokenClassification,
|
|
"zero-shot": TFEsmForSequenceClassification,
|
|
}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
test_head_masking = False
|
|
test_onnx = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFEsmModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=EsmConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
"""Test the base model"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_as_decoder(self):
|
|
"""Test the base model as a decoder (of an encoder-decoder architecture)
|
|
|
|
is_deocder=True + cross_attention + pass encoder outputs
|
|
"""
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
|
|
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "facebook/esm2_t6_8M_UR50D"
|
|
model = TFEsmModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
@unittest.skip("Protein models do not support embedding resizing.")
|
|
def test_resize_token_embeddings(self):
|
|
pass
|
|
|
|
@unittest.skip("Protein models do not support embedding resizing.")
|
|
def test_save_load_after_resize_token_embeddings(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
assert isinstance(model.get_input_embeddings(), keras.layers.Layer)
|
|
if model_class is TFEsmForMaskedLM:
|
|
# Output embedding test differs from the main test because they're a matrix, not a layer
|
|
name = model.get_bias()
|
|
assert isinstance(name, dict)
|
|
for k, v in name.items():
|
|
assert isinstance(v, tf.Variable)
|
|
else:
|
|
x = model.get_output_embeddings()
|
|
assert x is None
|
|
name = model.get_bias()
|
|
assert name is None
|
|
|
|
|
|
@require_tf
|
|
class TFEsmModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_masked_lm(self):
|
|
model = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D")
|
|
|
|
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
|
|
output = model(input_ids)[0]
|
|
expected_shape = [1, 6, 33]
|
|
self.assertEqual(list(output.numpy().shape), expected_shape)
|
|
# compare the actual values for a slice.
|
|
expected_slice = tf.constant(
|
|
[
|
|
[
|
|
[8.921518, -10.589814, -6.4671307],
|
|
[-6.3967156, -13.911377, -1.1211915],
|
|
[-7.781247, -13.951557, -3.740592],
|
|
]
|
|
]
|
|
)
|
|
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-2))
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
model = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D")
|
|
|
|
input_ids = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]])
|
|
output = model(input_ids)[0]
|
|
# compare the actual values for a slice.
|
|
expected_slice = tf.constant(
|
|
[
|
|
[
|
|
[0.14443092, 0.54125327, 0.3247739],
|
|
[0.30340484, 0.00526676, 0.31077722],
|
|
[0.32278043, -0.24987096, 0.3414628],
|
|
]
|
|
]
|
|
)
|
|
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
|