309 lines
12 KiB
Python
309 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
""" Testing suite for the TensorFlow ConvNext model. """
|
|
|
|
from __future__ import annotations
|
|
|
|
import inspect
|
|
import unittest
|
|
from typing import List, Tuple
|
|
|
|
import numpy as np
|
|
|
|
from transformers import ConvNextV2Config
|
|
from transformers.testing_utils import require_tf, require_vision, slow
|
|
from transformers.utils import cached_property, is_tf_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_tf_available():
|
|
import tensorflow as tf
|
|
|
|
from transformers import TFConvNextV2ForImageClassification, TFConvNextV2Model
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import ConvNextImageProcessor
|
|
|
|
|
|
class TFConvNextV2ModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
image_size=32,
|
|
num_channels=3,
|
|
num_stages=4,
|
|
hidden_sizes=[10, 20, 30, 40],
|
|
depths=[2, 2, 3, 2],
|
|
is_training=True,
|
|
use_labels=True,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.num_channels = num_channels
|
|
self.num_stages = num_stages
|
|
self.hidden_sizes = hidden_sizes
|
|
self.depths = depths
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels
|
|
|
|
def get_config(self):
|
|
return ConvNextV2Config(
|
|
num_channels=self.num_channels,
|
|
hidden_sizes=self.hidden_sizes,
|
|
depths=self.depths,
|
|
num_stages=self.num_stages,
|
|
hidden_act=self.hidden_act,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels):
|
|
model = TFConvNextV2Model(config=config)
|
|
result = model(pixel_values, training=False)
|
|
# expected last hidden states: batch_size, channels, height // 32, width // 32
|
|
self.parent.assertEqual(
|
|
result.last_hidden_state.shape,
|
|
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
|
|
)
|
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels):
|
|
config.num_labels = self.type_sequence_label_size
|
|
model = TFConvNextV2ForImageClassification(config)
|
|
result = model(pixel_values, labels=labels, training=False)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_tf
|
|
class TFConvNextV2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as ConvNext does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (TFConvNextV2Model, TFConvNextV2ForImageClassification) if is_tf_available() else ()
|
|
pipeline_model_mapping = (
|
|
{"feature-extraction": TFConvNextV2Model, "image-classification": TFConvNextV2ForImageClassification}
|
|
if is_tf_available()
|
|
else {}
|
|
)
|
|
|
|
test_pruning = False
|
|
test_onnx = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
has_attentions = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = TFConvNextV2ModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self,
|
|
config_class=ConvNextV2Config,
|
|
has_text_modality=False,
|
|
hidden_size=37,
|
|
)
|
|
|
|
@unittest.skip(reason="ConvNext does not use inputs_embeds")
|
|
def test_inputs_embeds(self):
|
|
pass
|
|
|
|
@unittest.skipIf(
|
|
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
|
|
reason="TF does not support backprop for grouped convolutions on CPU.",
|
|
)
|
|
@slow
|
|
def test_keras_fit(self):
|
|
super().test_keras_fit()
|
|
|
|
@unittest.skip(reason="ConvNext does not support input and output embeddings")
|
|
def test_model_common_attributes(self):
|
|
pass
|
|
|
|
def test_forward_signature(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
signature = inspect.signature(model.call)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["pixel_values"]
|
|
self.assertListEqual(arg_names[:1], expected_arg_names)
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
@unittest.skipIf(
|
|
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
|
|
reason="TF does not support backprop for grouped convolutions on CPU.",
|
|
)
|
|
def test_dataset_conversion(self):
|
|
super().test_dataset_conversion()
|
|
|
|
def test_hidden_states_output(self):
|
|
def check_hidden_states_output(inputs_dict, config, model_class):
|
|
model = model_class(config)
|
|
|
|
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
|
|
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
|
|
|
|
expected_num_stages = self.model_tester.num_stages
|
|
self.assertEqual(len(hidden_states), expected_num_stages + 1)
|
|
|
|
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
|
|
self.assertListEqual(
|
|
list(hidden_states[0].shape[-2:]),
|
|
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
|
|
)
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
inputs_dict["output_hidden_states"] = True
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# check that output_hidden_states also work using config
|
|
del inputs_dict["output_hidden_states"]
|
|
config.output_hidden_states = True
|
|
|
|
check_hidden_states_output(inputs_dict, config, model_class)
|
|
|
|
# Since ConvNext does not have any attention we need to rewrite this test.
|
|
def test_model_outputs_equivalence(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
|
|
tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs)
|
|
dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
all(tf.equal(tuple_object, dict_object)),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}"
|
|
),
|
|
)
|
|
|
|
recursive_check(tuple_output, dict_output)
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs)
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
|
|
|
|
def test_for_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model = TFConvNextV2Model.from_pretrained("facebook/convnextv2-tiny-1k-224")
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_tf
|
|
@require_vision
|
|
class TFConvNextV2ModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return (
|
|
ConvNextImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224")
|
|
if is_vision_available()
|
|
else None
|
|
)
|
|
|
|
@slow
|
|
def test_inference_image_classification_head(self):
|
|
model = TFConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224")
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="tf")
|
|
|
|
# forward pass
|
|
outputs = model(**inputs)
|
|
|
|
# verify the logits
|
|
expected_shape = tf.TensorShape((1, 1000))
|
|
self.assertEqual(outputs.logits.shape, expected_shape)
|
|
|
|
expected_slice = np.array([0.9996, 0.1966, -0.4386])
|
|
|
|
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
|