204 lines
8.4 KiB
Python
204 lines
8.4 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from transformers import CLIPTokenizer, CLIPTokenizerFast
|
|
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
|
|
from transformers.testing_utils import require_vision
|
|
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import CLIPSegProcessor, ViTImageProcessor
|
|
|
|
|
|
@require_vision
|
|
class CLIPSegProcessorTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.tmpdirname = tempfile.mkdtemp()
|
|
|
|
vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip
|
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
|
merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
|
|
self.special_tokens_map = {"unk_token": "<unk>"}
|
|
|
|
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
|
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
|
|
with open(self.vocab_file, "w", encoding="utf-8") as fp:
|
|
fp.write(json.dumps(vocab_tokens) + "\n")
|
|
with open(self.merges_file, "w", encoding="utf-8") as fp:
|
|
fp.write("\n".join(merges))
|
|
|
|
image_processor_map = {
|
|
"do_resize": True,
|
|
"size": 20,
|
|
"do_center_crop": True,
|
|
"crop_size": 18,
|
|
"do_normalize": True,
|
|
"image_mean": [0.48145466, 0.4578275, 0.40821073],
|
|
"image_std": [0.26862954, 0.26130258, 0.27577711],
|
|
}
|
|
self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
|
|
with open(self.image_processor_file, "w", encoding="utf-8") as fp:
|
|
json.dump(image_processor_map, fp)
|
|
|
|
def get_tokenizer(self, **kwargs):
|
|
return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_rust_tokenizer(self, **kwargs):
|
|
return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def get_image_processor(self, **kwargs):
|
|
return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
|
|
|
|
def tearDown(self):
|
|
shutil.rmtree(self.tmpdirname)
|
|
|
|
def prepare_image_inputs(self):
|
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
|
|
or a list of PyTorch tensors if one specifies torchify=True."""
|
|
|
|
image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]
|
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
|
|
|
|
return image_inputs
|
|
|
|
def test_save_load_pretrained_default(self):
|
|
tokenizer_slow = self.get_tokenizer()
|
|
tokenizer_fast = self.get_rust_tokenizer()
|
|
image_processor = self.get_image_processor()
|
|
|
|
processor_slow = CLIPSegProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
|
|
processor_slow.save_pretrained(self.tmpdirname)
|
|
processor_slow = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=False)
|
|
|
|
processor_fast = CLIPSegProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
|
|
processor_fast.save_pretrained(self.tmpdirname)
|
|
processor_fast = CLIPSegProcessor.from_pretrained(self.tmpdirname)
|
|
|
|
self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
|
|
self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
|
|
self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
|
|
self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
|
|
self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
|
|
|
|
self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
|
|
self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
|
|
self.assertIsInstance(processor_slow.image_processor, ViTImageProcessor)
|
|
self.assertIsInstance(processor_fast.image_processor, ViTImageProcessor)
|
|
|
|
def test_save_load_pretrained_additional_features(self):
|
|
processor = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
|
|
processor.save_pretrained(self.tmpdirname)
|
|
|
|
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
|
|
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
|
|
|
|
processor = CLIPSegProcessor.from_pretrained(
|
|
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
|
|
)
|
|
|
|
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
|
|
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
|
|
|
|
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
|
|
self.assertIsInstance(processor.image_processor, ViTImageProcessor)
|
|
|
|
def test_image_processor(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
input_feat_extract = image_processor(image_input, return_tensors="np")
|
|
input_processor = processor(images=image_input, return_tensors="np")
|
|
|
|
for key in input_feat_extract.keys():
|
|
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
|
|
|
|
def test_tokenizer(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
|
|
encoded_processor = processor(text=input_str)
|
|
|
|
encoded_tok = tokenizer(input_str)
|
|
|
|
for key in encoded_tok.keys():
|
|
self.assertListEqual(encoded_tok[key], encoded_processor[key])
|
|
|
|
def test_processor_text(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
input_str = "lower newer"
|
|
image_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(text=input_str, images=image_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_processor_visual_prompt(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
image_input = self.prepare_image_inputs()
|
|
visual_prompt_input = self.prepare_image_inputs()
|
|
|
|
inputs = processor(images=image_input, visual_prompt=visual_prompt_input)
|
|
|
|
self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"])
|
|
|
|
# test if it raises when no input is passed
|
|
with pytest.raises(ValueError):
|
|
processor()
|
|
|
|
def test_tokenizer_decode(self):
|
|
image_processor = self.get_image_processor()
|
|
tokenizer = self.get_tokenizer()
|
|
|
|
processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor)
|
|
|
|
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
|
|
|
|
decoded_processor = processor.batch_decode(predicted_ids)
|
|
decoded_tok = tokenizer.batch_decode(predicted_ids)
|
|
|
|
self.assertListEqual(decoded_tok, decoded_processor)
|