252 lines
9.9 KiB
Python
252 lines
9.9 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import BloomConfig, BloomTokenizerFast, is_flax_available
|
|
from transformers.testing_utils import require_flax, slow
|
|
|
|
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
|
|
|
|
|
|
if is_flax_available():
|
|
import os
|
|
|
|
# The slow tests are often failing with OOM error on GPU
|
|
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
|
|
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
|
|
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
|
|
|
|
import jax.numpy as jnp
|
|
|
|
from transformers import FlaxBloomForCausalLM, FlaxBloomModel
|
|
|
|
|
|
def prepare_bloom_inputs_dict(config, input_ids, attention_mask=None):
|
|
if attention_mask is None:
|
|
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
|
|
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
|
|
|
|
|
@require_flax
|
|
class FlaxBloomModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_labels=False,
|
|
vocab_size=99,
|
|
hidden_size=16,
|
|
n_layer=2,
|
|
n_head=4,
|
|
hidden_act="gelu",
|
|
hidden_dropout=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
eos_token_id=2,
|
|
pad_token_id=1,
|
|
bos_token_id=0,
|
|
initializer_range=0.02,
|
|
apply_residual_connection_post_layernorm=False,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = n_layer
|
|
self.num_attention_heads = n_head
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout = hidden_dropout
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.eos_token_id = eos_token_id
|
|
self.pad_token_id = pad_token_id
|
|
self.bos_token_id = bos_token_id
|
|
self.initializer_range = initializer_range
|
|
self.is_encoder_decoder = False
|
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
|
|
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
|
|
|
|
config = BloomConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
n_layer=self.num_hidden_layers,
|
|
n_head=self.num_attention_heads,
|
|
hidden_dropout=self.hidden_dropout,
|
|
attention_dropout=self.attention_probs_dropout_prob,
|
|
eos_token_id=self.eos_token_id,
|
|
bos_token_id=self.bos_token_id,
|
|
pad_token_id=self.pad_token_id,
|
|
is_encoder_decoder=False,
|
|
use_cache=False,
|
|
)
|
|
inputs_dict = prepare_bloom_inputs_dict(config, input_ids)
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config, inputs_dict = self.prepare_config_and_inputs()
|
|
return config, inputs_dict
|
|
|
|
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
|
|
max_length = 20
|
|
model = model_class_name(config)
|
|
|
|
input_ids = inputs_dict["input_ids"]
|
|
attention_mask = jnp.ones((input_ids.shape[0], max_length), dtype="i4")
|
|
|
|
past_key_values = model.init_cache(input_ids.shape[0], max_length)
|
|
|
|
outputs_cache = model(
|
|
input_ids[:, :-1],
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
)
|
|
|
|
outputs_cache_next = model(
|
|
input_ids[:, -1:],
|
|
attention_mask=attention_mask,
|
|
past_key_values=outputs_cache.past_key_values,
|
|
)
|
|
|
|
outputs = model(input_ids)
|
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
|
|
|
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
|
|
max_length = 20
|
|
model = model_class_name(config)
|
|
|
|
input_ids, attention_mask = (
|
|
inputs_dict["input_ids"],
|
|
inputs_dict["attention_mask"],
|
|
)
|
|
|
|
attention_mask_cache = jnp.concatenate(
|
|
[
|
|
attention_mask,
|
|
jnp.zeros((attention_mask.shape[0], max_length - attention_mask.shape[1])),
|
|
],
|
|
axis=-1,
|
|
)
|
|
|
|
past_key_values = model.init_cache(input_ids.shape[0], max_length)
|
|
|
|
outputs_cache = model(
|
|
input_ids[:, :-1],
|
|
attention_mask=attention_mask_cache,
|
|
past_key_values=past_key_values,
|
|
)
|
|
outputs_cache_next = model(
|
|
input_ids[:, -1:],
|
|
past_key_values=outputs_cache.past_key_values,
|
|
attention_mask=attention_mask_cache,
|
|
)
|
|
|
|
outputs = model(input_ids, attention_mask=attention_mask)
|
|
|
|
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
|
|
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
|
|
|
|
|
|
@require_flax
|
|
class FlaxBloomModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
|
|
all_model_classes = (FlaxBloomModel, FlaxBloomForCausalLM) if is_flax_available() else ()
|
|
all_generative_model_classes = () if is_flax_available() else ()
|
|
|
|
def setUp(self):
|
|
self.model_tester = FlaxBloomModelTester(self)
|
|
|
|
def test_use_cache_forward(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
|
|
|
|
def test_use_cache_forward_with_attn_mask(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
|
for model_class in self.all_model_classes:
|
|
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_class_name in self.all_model_classes:
|
|
model = model_class_name.from_pretrained("bigscience/bloom-560m")
|
|
input_ids = np.ones((1, 1)) * model.config.eos_token_id
|
|
outputs = model(input_ids)
|
|
self.assertIsNotNone(outputs)
|
|
|
|
|
|
@slow
|
|
@require_flax
|
|
class FlaxBloomGenerationTest(unittest.TestCase):
|
|
all_model_classes = (FlaxBloomForCausalLM,) if is_flax_available() else ()
|
|
all_generative_model_classes = () if is_flax_available() else ()
|
|
|
|
def setUp(self):
|
|
self.model_id = "bigscience/bloom-560m"
|
|
self.tokenizer = BloomTokenizerFast.from_pretrained(self.model_id, padding_side="left")
|
|
self.model_tester = FlaxBloomModelTester(self)
|
|
self.model = FlaxBloomForCausalLM.from_pretrained(self.model_id, from_pt=True, revision="gs555750")
|
|
|
|
def test_model_batched_gen(self):
|
|
# tests if the model outputs the same generation for the same batched input
|
|
input_sentences = [
|
|
"Hello there is this string is definitely longer I believe that",
|
|
"Hello there is this string is definitely longer I believe that",
|
|
]
|
|
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
|
|
sequences_fx = self.model.generate(**inputs, max_length=20).sequences
|
|
self.assertEqual(sequences_fx[0].tolist(), sequences_fx[1].tolist())
|
|
|
|
def test_model_batched_padding_left(self):
|
|
# tests if the model outputs the same generation for an input that is part of a batch
|
|
# and a single input
|
|
input_sentences_batch = [
|
|
"Hello there is this string is definitely longer I believe that",
|
|
"Hi I want to order",
|
|
]
|
|
inputs = self.tokenizer(input_sentences_batch, return_tensors="np", padding=True, truncation=True)
|
|
sequences_fx_batch = self.model.generate(**inputs, max_length=20).sequences
|
|
|
|
input_sentence_simple = "Hi I want to order"
|
|
inputs_simple = self.tokenizer(input_sentence_simple, return_tensors="np")
|
|
sequences_fx_simple = self.model.generate(**inputs_simple, max_length=20).sequences
|
|
|
|
self.assertEqual(sequences_fx_batch[1][6:].tolist(), sequences_fx_simple[0][:-6].tolist())
|
|
|
|
def test_batch_generated_text(self):
|
|
input_sentences = [
|
|
"Hello what is",
|
|
"Running a quick test with the",
|
|
]
|
|
inputs = self.tokenizer(input_sentences, return_tensors="np", padding=True, truncation=True)
|
|
generated_ids = self.model.generate(**inputs, max_length=20).sequences
|
|
generated_text = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
|
# these generations match those of the PyTorch model, ensuring correctness
|
|
EXPECTED_GENERATIONS = [
|
|
"Hello what is the best way to get the data from the server? I have tried",
|
|
"Running a quick test with the following command:\nsudo apt-get install python3\nsudo apt-get install python2",
|
|
]
|
|
|
|
self.assertListEqual(generated_text, EXPECTED_GENERATIONS)
|