162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import AlbertConfig, is_flax_available
|
|
from transformers.testing_utils import require_flax, slow
|
|
|
|
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
|
|
|
|
|
|
if is_flax_available():
|
|
import jax.numpy as jnp
|
|
|
|
from transformers.models.albert.modeling_flax_albert import (
|
|
FlaxAlbertForMaskedLM,
|
|
FlaxAlbertForMultipleChoice,
|
|
FlaxAlbertForPreTraining,
|
|
FlaxAlbertForQuestionAnswering,
|
|
FlaxAlbertForSequenceClassification,
|
|
FlaxAlbertForTokenClassification,
|
|
FlaxAlbertModel,
|
|
)
|
|
|
|
|
|
class FlaxAlbertModelTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_attention_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_choices=4,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_attention_mask = use_attention_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_choices = num_choices
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
attention_mask = None
|
|
if self.use_attention_mask:
|
|
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
config = AlbertConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
)
|
|
|
|
return config, input_ids, token_type_ids, attention_mask
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, input_ids, token_type_ids, attention_mask = config_and_inputs
|
|
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_flax
|
|
class FlaxAlbertModelTest(FlaxModelTesterMixin, unittest.TestCase):
|
|
all_model_classes = (
|
|
(
|
|
FlaxAlbertModel,
|
|
FlaxAlbertForPreTraining,
|
|
FlaxAlbertForMaskedLM,
|
|
FlaxAlbertForMultipleChoice,
|
|
FlaxAlbertForQuestionAnswering,
|
|
FlaxAlbertForSequenceClassification,
|
|
FlaxAlbertForTokenClassification,
|
|
FlaxAlbertForQuestionAnswering,
|
|
)
|
|
if is_flax_available()
|
|
else ()
|
|
)
|
|
|
|
def setUp(self):
|
|
self.model_tester = FlaxAlbertModelTester(self)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
for model_class_name in self.all_model_classes:
|
|
model = model_class_name.from_pretrained("albert/albert-base-v2")
|
|
outputs = model(np.ones((1, 1)))
|
|
self.assertIsNotNone(outputs)
|
|
|
|
|
|
@require_flax
|
|
class FlaxAlbertModelIntegrationTest(unittest.TestCase):
|
|
@slow
|
|
def test_inference_no_head_absolute_embedding(self):
|
|
model = FlaxAlbertModel.from_pretrained("albert/albert-base-v2")
|
|
input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
|
|
attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
|
|
output = model(input_ids, attention_mask=attention_mask)[0]
|
|
expected_shape = (1, 11, 768)
|
|
self.assertEqual(output.shape, expected_shape)
|
|
expected_slice = np.array(
|
|
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]
|
|
)
|
|
|
|
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
|