transformers/examples/research_projects/information-gain-filtration/igf/igf.py

417 lines
14 KiB
Python

# Copyright 2022 - Intel Corp. All rights reserved.
# Authors: Mayank Kumar Raunak, Javier Turek, Nicole Backage
import copy
import logging
import random
import joblib
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AdamW, GPT2LMHeadModel, get_linear_schedule_with_warmup
logger = logging.getLogger(__name__)
def set_seed(seed):
"""
For reproducible training
Args:
seed: A seed for reproducible training
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def compute_perplexity(model, test_data, context_len):
"""
Computes perplexity of the transformer model on data in test_data
Args:
model: Pre-trained GPT2 model
test_data: Data on which perplexity calculation is required
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
Returns:
Perplexity on input test data
"""
model.eval()
device = next(model.parameters()).device
eval_batch_size = 1
context = torch.zeros((eval_batch_size, context_len), dtype=torch.long, device=device)
eval_dataloader = DataLoader(test_data, shuffle=False, batch_size=eval_batch_size)
eval_loss = torch.zeros(1, device=device)
nb_eval_examples = 0
for batch in eval_dataloader:
batch.to(device)
# pad
context.zero_()
for i in range(eval_batch_size):
context[i, :] = batch[i]
outputs = model(context, labels=context)
eval_loss += outputs[0].sum().item()
nb_eval_examples += batch.size(0)
eval_loss = eval_loss / nb_eval_examples
perplexity = torch.exp(eval_loss)
model.train()
return perplexity
def load_gpt2(model_name="openai-community/gpt2"):
"""
load original openai-community/gpt2 and save off for quicker loading
Args:
model_name: GPT-2
Returns:
GPT-2 model
"""
model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True)
torch.save(model.state_dict(), model_name + "local.pt")
return model
def recopy_gpt2(orig_model, device, max_steps):
"""
Reset the model to the original pretrained GPT-2 weights after each iteration
Args:
orig_model: Original pretrained GPT-2 model imported from Transformers library
device: CPU/GPU
max_steps: number of training steps
Returns:
Original PreTrained GPT-2 model,
lm_optimizer: Adam optimizer with Decoupled weight decay
lm_scheduler: linear scheduler with the appropriate schedule
"""
model = copy.deepcopy(orig_model)
model.to(device)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
lm_optimizer = AdamW(optimizer_grouped_parameters, lr=5e-5, eps=1e-8)
lm_scheduler = get_linear_schedule_with_warmup(lm_optimizer, 0, max_steps)
torch.cuda.empty_cache()
return model, lm_optimizer, lm_scheduler
def intermittent_save(contexts, real_perps, past_perps, filename):
"""
save the perplexity differences to filename
Args:
contexts: Example on which the perplexity is calculated
real_perps: Perplexity after back-propagating on the selected context
past_perps: Perplexity of model before training on the context
filename: File to store perplexity differences
Returns:
file with perplexity differences
"""
# save the perplexity differences to filename
avg = np.array(real_perps).mean()
std = np.array(real_perps).std()
perp_diff = (real_perps - avg) / std
data_final = list(zip(contexts, perp_diff, past_perps))
joblib.dump(data_final, filename)
def collect_objective_set(
model,
orig_perp,
context_len,
train_data,
objective_set,
max_steps,
device,
filename="dev.jbl",
recopy_model=recopy_gpt2,
):
"""
Collect individual IGF values from pre-trained transformer model
max_steps samples of training data to train secondary model
Args:
model: Pre-trained GPT2 model
orig_perp: Perplexity of original pretrained GPT-2 model
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
train_data: Data to train model
objective_set: Contexts used to create (X,IG(X)) pairs which is the training data for secondary learner
max_steps: To calculate training epochs of model
device: GPU/CPU
filename: To store intermediate perplexity differences
recopy_model: Reset the model to the original pretrained GPT-2 weights after each iteration
Returns:
file stored intermediate perplexity differences in intermediate stages
"""
# initialize variables to record relevant information
contexts = []
real_perps = []
past_perps = []
# Initialize the transformer model
orig_model = copy.deepcopy(model)
orig_model.to(device="cpu")
torch.cuda.empty_cache()
# Compute perplexity of initial transformer model for comparison
model.train()
model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps)
for step in tqdm(range(max_steps)):
context = torch.zeros((1, context_len), dtype=torch.long, device=device)
story = random.choice(train_data)
start = random.randint(0, len(story[0]) - context_len - 1)
context[0, :] = story[0][start : start + context_len]
lm_optimizer.zero_grad()
outputs = model(context, labels=context)
lm_loss = outputs[0]
past_perp = compute_perplexity(model, context, context_len)
model.train()
lm_loss.backward()
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0)
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
# Compute perplexity after back-propagating on the selected context
real_perp = compute_perplexity(model, objective_set, context_len)
# Periodically save the stored (X, IG(X)) pairs
if step % 1000 == 0 and step > 1:
intermittent_save(contexts, real_perps, past_perps, filename)
# Reset the pretrained model to the original pretrained GPT-2 weights after each iteration
model, lm_optimizer, lm_scheduler = recopy_model(orig_model, device, max_steps)
past_perps.append(past_perp.item())
real_perps.append(orig_perp - real_perp.item())
contexts.append(np.array(context.cpu()))
intermittent_save(contexts, real_perps, past_perps, filename)
def generate_datasets(
context_len, file="data/tokenized_stories_train_wikitext103.jbl", number=100, min_len=1026, trim=True
):
"""
Generate objective set and training set
Args:
context_len: The maximum total input sequence length after tokenization. Sequences longer
than this will be truncated, sequences shorter will be padded
file: Tokenized data split into training set and objective set
number: size of objective dataset
min_len: minimum length of a context in objective set
trim: If True truncate the context if it exceeds context length
Returns:
Generated objective set and training data
"""
# Generate objective set and training set
# Designate the first number (100) articles that are long enough to be used
# as our objective set, rest (that are long enough) are training data for
# secondary learner
data = joblib.load(file)
print("data loaded")
objective_set = []
if trim:
for i, example in enumerate(data):
if len(example[0]) > min_len:
start = random.randint(0, len(example[0]) - context_len - 1)
objective_set.append(example[0, start : start + context_len])
if len(objective_set) >= number:
break
train_data = []
for j in range(i + 1, len(data)):
if len(data[j][0]) > min_len:
train_data.append(data[j])
else:
objective_set = data[0:number]
train_data = data[number:]
joblib.dump(objective_set, "objective_set.jbl")
print("objective set saved")
return train_data, objective_set
def train_secondary_learner(
secondary_learner, train_dataset, max_epochs, batch_size, eval_freq=50, igf_model_path="secondary_learner.pt"
):
"""
Train the secondary learner (igf_model)
Args:
secondary_learner: secondary learner
train_dataset: data to train secondary learner
max_epochs: number of epochs to train secondary learner
batch_size: batch size of training data of secondary learner
eval_freq: secondary model evaluation can be triggered at eval_freq
igf_model_path: path to store trained secondary learner
Returns:
Trained secondary learner
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# We will use the first 512 pairs from our dataset as a test set for
# our secondary learner and the rest to train
test_dataset = train_dataset[:512]
train_dataset = train_dataset[512:]
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataloader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# secondary learner model set up
loss = nn.MSELoss()
test_loss = nn.MSELoss(reduction="sum")
secondary_learner.to(device)
q_optimizer = torch.optim.Adam(secondary_learner.parameters(), lr=0.00001)
secondary_learner.train()
# TODO in original code this is written as number of actual batches seen
# not number of items seen but other places it is number of items instead.
# improve consistency! changed this to epochs for clarity
best_test_loss = float("inf")
# Iterate through batches until we've used max_steps batches
for epoch in range(int(max_epochs)):
tr_q_loss = 0.0
secondary_learner.train()
for step, batch in enumerate(train_dataloader):
context = batch[0].to(device)
real_q = batch[1].to(device)
predicted_q = secondary_learner(context)
q_optimizer.zero_grad()
q_loss = loss(predicted_q, real_q.float())
q_loss.backward()
q_optimizer.step()
tr_q_loss += q_loss.item()
# model trains fairly quickly so we won't wait for a full epoch
# eval is triggered at eval_freq and end of epochs
if (step % eval_freq == 0 and step > 0) or ((step + 1) == len(train_dataloader)):
tr_loss = tr_q_loss / (step + 1)
secondary_learner.eval()
q_loss2 = 0.0
sum_q2 = 0.0
predicted = []
actual = []
# Compute performance of the secondary learner after this batch
for step2, batch2 in enumerate(test_dataloader):
features2 = batch2[0].to(device)
real_q2 = batch2[1].to(device)
predicted_q2 = secondary_learner(features2)
q_loss2 += test_loss(predicted_q2, real_q2).item()
sum_q2 += torch.sum(predicted_q2).item()
for ei, i in enumerate(predicted_q2.cpu().detach().numpy()):
predicted.append(i.item())
for ei, i in enumerate(real_q2.cpu().detach().numpy()):
actual.append(i.item())
q_loss2 /= len(test_dataset)
print(
"Epoch: ",
epoch,
"step: ",
step,
"Avg. q:",
sum_q2 / len(test_dataset),
"Train Loss: ",
tr_loss,
"Test Loss: ",
q_loss2,
)
if q_loss2 < best_test_loss:
joblib.dump((predicted, actual), "pred_vs_actual.jbl")
torch.save(secondary_learner.state_dict(), igf_model_path)
best_test_loss = q_loss2
secondary_learner.train()
return secondary_learner
class SecondaryLearner(nn.Module):
"""
Our secondary learner
"""
def __init__(self, model):
"""
We use a simple convolutional network as our secondary learner
Args:
model: Pre-trained GPT2 model
"""
# embeddings are from the pretrained model
super(SecondaryLearner, self).__init__()
self.embeddings = model.transformer.wte
self.embeddings.weight = copy.deepcopy(model.transformer.wte.weight)
self.conv = nn.Conv1d(self.embeddings.weight.size(1), 256, 3, padding=1)
self.fc = nn.Sequential(nn.Linear(256, 32), nn.Dropout(p=0.1), nn.Linear(32, 32), nn.Linear(32, 1))
def forward(self, context):
"""
Forward pass through the secondary learner
Args:
context: Context input to the secondary learner
Returns:
tensor after squeeze operation
"""
pooled = torch.max(self.conv(self.embeddings(context).squeeze(1).transpose(1, 2)), 2)[0]
qs = self.fc(pooled)
return qs.squeeze(1)
@classmethod
def from_pretrained(cls, state_path, model):
"""
Load the secondary learner
Args:
state_path: Path to save secondary learner
model: Pretrained GPT-2
Returns:
secondary learner
"""
secondary_learner = cls(model) # this calls __init__
state_dict = torch.load(state_path)
secondary_learner.load_state_dict(state_dict)
secondary_learner.embeddings = model.transformer.wte
secondary_learner.embeddings.weight = copy.deepcopy(model.transformer.wte.weight)
return secondary_learner