110 lines
4.2 KiB
Python
110 lines
4.2 KiB
Python
import json
|
|
import os
|
|
import subprocess
|
|
import unittest
|
|
from ast import literal_eval
|
|
|
|
import pytest
|
|
from parameterized import parameterized, parameterized_class
|
|
|
|
from . import is_sagemaker_available
|
|
|
|
|
|
if is_sagemaker_available():
|
|
from sagemaker import Session, TrainingJobAnalytics
|
|
from sagemaker.huggingface import HuggingFace
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True,
|
|
reason="Skipping test because should only be run when releasing minor transformers version",
|
|
)
|
|
@pytest.mark.usefixtures("sm_env")
|
|
@parameterized_class(
|
|
[
|
|
{
|
|
"framework": "pytorch",
|
|
"script": "run_glue.py",
|
|
"model_name_or_path": "distilbert/distilbert-base-cased",
|
|
"instance_type": "ml.p3.16xlarge",
|
|
"results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6},
|
|
},
|
|
{
|
|
"framework": "pytorch",
|
|
"script": "run_ddp.py",
|
|
"model_name_or_path": "distilbert/distilbert-base-cased",
|
|
"instance_type": "ml.p3.16xlarge",
|
|
"results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6},
|
|
},
|
|
{
|
|
"framework": "tensorflow",
|
|
"script": "run_tf_dist.py",
|
|
"model_name_or_path": "distilbert/distilbert-base-cased",
|
|
"instance_type": "ml.p3.16xlarge",
|
|
"results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7},
|
|
},
|
|
]
|
|
)
|
|
class MultiNodeTest(unittest.TestCase):
|
|
def setUp(self):
|
|
if self.framework == "pytorch":
|
|
subprocess.run(
|
|
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(),
|
|
encoding="utf-8",
|
|
check=True,
|
|
)
|
|
assert hasattr(self, "env")
|
|
|
|
def create_estimator(self, instance_count):
|
|
job_name = f"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}"
|
|
# distributed data settings
|
|
distribution = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None
|
|
|
|
# creates estimator
|
|
return HuggingFace(
|
|
entry_point=self.script,
|
|
source_dir=self.env.test_path,
|
|
role=self.env.role,
|
|
image_uri=self.env.image_uri,
|
|
base_job_name=job_name,
|
|
instance_count=instance_count,
|
|
instance_type=self.instance_type,
|
|
debugger_hook_config=False,
|
|
hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path},
|
|
metric_definitions=self.env.metric_definitions,
|
|
distribution=distribution,
|
|
py_version="py36",
|
|
)
|
|
|
|
def save_results_as_csv(self, job_name):
|
|
TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")
|
|
|
|
# @parameterized.expand([(2,), (4,),])
|
|
@parameterized.expand([(2,)])
|
|
def test_script(self, instance_count):
|
|
# create estimator
|
|
estimator = self.create_estimator(instance_count)
|
|
|
|
# run training
|
|
estimator.fit()
|
|
|
|
# result dataframe
|
|
result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
|
|
|
|
# extract kpis
|
|
eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"])
|
|
eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"])
|
|
# get train time from SageMaker job, this includes starting, preprocessing, stopping
|
|
train_runtime = (
|
|
Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999)
|
|
)
|
|
|
|
# assert kpis
|
|
assert train_runtime <= self.results["train_runtime"]
|
|
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy)
|
|
assert all(t <= self.results["eval_loss"] for t in eval_loss)
|
|
|
|
# dump tests result into json file to share in PR
|
|
with open(f"{estimator.latest_training_job.name}.json", "w") as outfile:
|
|
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)
|