307 lines
12 KiB
Python
307 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
|
|
from transformers.image_transforms import PaddingMode
|
|
from transformers.testing_utils import require_torch, require_vision
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import TvpImageProcessor
|
|
|
|
|
|
class TvpImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
do_resize: bool = True,
|
|
size: Dict[str, int] = {"longest_edge": 40},
|
|
do_center_crop: bool = False,
|
|
crop_size: Dict[str, int] = None,
|
|
do_rescale: bool = False,
|
|
rescale_factor: Union[int, float] = 1 / 255,
|
|
do_pad: bool = True,
|
|
pad_size: Dict[str, int] = {"height": 80, "width": 80},
|
|
fill: int = None,
|
|
pad_mode: PaddingMode = None,
|
|
do_normalize: bool = True,
|
|
image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073],
|
|
image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711],
|
|
batch_size=2,
|
|
min_resolution=40,
|
|
max_resolution=80,
|
|
num_channels=3,
|
|
num_frames=2,
|
|
):
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_center_crop = do_center_crop
|
|
self.crop_size = crop_size
|
|
self.do_rescale = do_rescale
|
|
self.rescale_factor = rescale_factor
|
|
self.do_pad = do_pad
|
|
self.pad_size = pad_size
|
|
self.fill = fill
|
|
self.pad_mode = pad_mode
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.num_frames = num_frames
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
"do_rescale": self.do_rescale,
|
|
"do_center_crop": self.do_center_crop,
|
|
"do_pad": self.do_pad,
|
|
"pad_size": self.pad_size,
|
|
}
|
|
|
|
def get_expected_values(self, image_inputs, batched=False):
|
|
"""
|
|
This function computes the expected height and width when providing images to TvpImageProcessor,
|
|
assuming do_resize is set to True with a scalar size.
|
|
"""
|
|
if not batched:
|
|
return (int(self.pad_size["height"]), int(self.pad_size["width"]))
|
|
|
|
else:
|
|
expected_values = []
|
|
for image in image_inputs:
|
|
expected_height, expected_width = self.get_expected_values([image])
|
|
expected_values.append((expected_height, expected_width))
|
|
expected_height = max(expected_values, key=lambda item: item[0])[0]
|
|
expected_width = max(expected_values, key=lambda item: item[1])[1]
|
|
|
|
return expected_height, expected_width
|
|
|
|
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_video_inputs(
|
|
batch_size=self.batch_size,
|
|
num_frames=self.num_frames,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class TvpImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = TvpImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = TvpImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "do_center_crop"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
self.assertTrue(hasattr(image_processing, "do_rescale"))
|
|
self.assertTrue(hasattr(image_processing, "do_pad"))
|
|
self.assertTrue(hasattr(image_processing, "pad_size"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"longest_edge": 40})
|
|
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size={"longest_edge": 12})
|
|
self.assertEqual(image_processor.size, {"longest_edge": 12})
|
|
|
|
def test_call_pil(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PIL videos
|
|
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, list)
|
|
self.assertIsInstance(video[0], Image.Image)
|
|
|
|
# Test not batched input
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
|
|
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
|
|
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def test_call_numpy(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, list)
|
|
self.assertIsInstance(video[0], np.ndarray)
|
|
|
|
# Test not batched input
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
|
|
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
|
|
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
def test_call_numpy_4_channels(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random numpy tensors
|
|
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, list)
|
|
self.assertIsInstance(video[0], np.ndarray)
|
|
|
|
# Test not batched input
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
|
|
encoded_videos = image_processing(
|
|
video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
|
|
).pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
|
|
encoded_videos = image_processing(
|
|
video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
|
|
).pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
self.image_processor_tester.num_channels = 3
|
|
|
|
def test_call_pytorch(self):
|
|
# Initialize image_processing
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
# create random PyTorch tensors
|
|
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
|
|
for video in video_inputs:
|
|
self.assertIsInstance(video, list)
|
|
self.assertIsInstance(video[0], torch.Tensor)
|
|
|
|
# Test not batched input
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
|
|
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
1,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|
|
|
|
# Test batched
|
|
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
|
|
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
|
|
self.assertEqual(
|
|
encoded_videos.shape,
|
|
(
|
|
self.image_processor_tester.batch_size,
|
|
self.image_processor_tester.num_frames,
|
|
self.image_processor_tester.num_channels,
|
|
expected_height,
|
|
expected_width,
|
|
),
|
|
)
|