transformers/tests/quantization/ggml/test_ggml.py

216 lines
9.7 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import AddedToken, AutoModelForCausalLM, AutoTokenizer
from transformers.testing_utils import require_gguf, require_torch_gpu, slow, torch_device
from transformers.utils import is_torch_available
if is_torch_available():
import torch
@require_gguf
@require_torch_gpu
@slow
class GgufIntegrationTests(unittest.TestCase):
original_model_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
mistral_model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
q4_0_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q4_0.gguf"
q4_k_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf"
q2_k_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q2_K.gguf"
q3_k_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q3_K_L.gguf"
q5_k_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"
q6_k_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
q8_0_gguf_model_id = "tinyllama-1.1b-chat-v1.0.Q8_0.gguf"
q4_0_mistral_model_id = "mistral-7b-instruct-v0.2.Q4_0.gguf"
example_text = "Hello"
def test_q2_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q2_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q2_k_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\n[10:0"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q2_k_serialization(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q2_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q2_k_gguf_model_id).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
tokenizer.save_pretrained(tmpdirname)
model = AutoModelForCausalLM.from_pretrained(tmpdirname).to(torch_device)
tokenizer = AutoTokenizer.from_pretrained(tmpdirname)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\n[10:0"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q3_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q3_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q3_k_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\n```\n<|user"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q5_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q5_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q5_k_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q4_0_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q4_0_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q4_k_m(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q4_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q4_k_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\n5. Python:\n"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q6_k(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q6_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q6_k_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q6_k_fp16(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q6_k_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.model_id, gguf_file=self.q6_k_gguf_model_id, torch_dtype=torch.float16
).to(torch_device)
self.assertTrue(model.lm_head.weight.dtype == torch.float16)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\nStep 3: Add"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_q8_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q8_0_gguf_model_id)
model = AutoModelForCausalLM.from_pretrained(self.model_id, gguf_file=self.q8_0_gguf_model_id).to(torch_device)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello, World!\n\n5. Use a library"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_mistral_q4_0(self):
tokenizer = AutoTokenizer.from_pretrained(self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id)
model = AutoModelForCausalLM.from_pretrained(
self.mistral_model_id, gguf_file=self.q4_0_mistral_model_id, device_map="auto", torch_dtype=torch.float16
)
text = tokenizer(self.example_text, return_tensors="pt").to(torch_device)
out = model.generate(**text, max_new_tokens=10)
EXPECTED_TEXT = "Hello,\n\nI'm trying to create a"
self.assertEqual(tokenizer.decode(out[0], skip_special_tokens=True), EXPECTED_TEXT)
def test_tokenization_xnli(self):
import tqdm
from datasets import load_dataset
gguf_tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q8_0_gguf_model_id)
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id)
dataset = load_dataset("code_x_glue_ct_code_to_text", "go")
for item in tqdm.tqdm(dataset["validation"]):
string = item["code"]
encoded1 = gguf_tokenizer.encode(string)
encoded2 = original_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
dataset = load_dataset("xnli", "all_languages")
for i, item in enumerate(tqdm.tqdm(dataset["train"].select(range(100)))):
for string in item["premise"].values():
encoded1 = gguf_tokenizer.encode(string)
encoded2 = original_tokenizer.encode(string)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)
# With special tokens
gguf_tokenizer = AutoTokenizer.from_pretrained(self.model_id, gguf_file=self.q8_0_gguf_model_id)
original_tokenizer = AutoTokenizer.from_pretrained(self.original_model_id)
gguf_tokenizer.add_special_tokens(
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]}
)
original_tokenizer.add_special_tokens(
{"additional_special_tokens": [AddedToken("<token>", rstrip=False, lstrip=False)]}
)
text = "Hello <token>. <token> Hello"
encoded1 = gguf_tokenizer.encode(text)
encoded2 = original_tokenizer.encode(text)
self.assertEqual(encoded1, encoded2)
decoded1 = gguf_tokenizer.decode(encoded1, skip_special_tokens=True)
decoded2 = original_tokenizer.decode(encoded2, skip_special_tokens=True)
self.assertEqual(decoded1, decoded2)