transformers/tests/models/wav2vec2_bert/test_modeling_wav2vec2_bert.py

915 lines
37 KiB
Python

# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Wav2Vec2-BERT model."""
import tempfile
import unittest
from datasets import load_dataset
from transformers import Wav2Vec2BertConfig, is_torch_available
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_torch,
require_torch_accelerator,
require_torch_fp16,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoFeatureExtractor,
Wav2Vec2BertForAudioFrameClassification,
Wav2Vec2BertForCTC,
Wav2Vec2BertForSequenceClassification,
Wav2Vec2BertForXVector,
Wav2Vec2BertModel,
)
from transformers.models.wav2vec2_bert.modeling_wav2vec2_bert import (
_compute_mask_indices,
_sample_negative_indices,
)
# Copied from tests.models.wav2vec2_conformer.test_modeling_wav2vec2_conformer.Wav2Vec2ConformerModelTester with Conformer->Bert, input_values->input_features
class Wav2Vec2BertModelTester:
# Ignore copy
def __init__(
self,
parent,
batch_size=13,
seq_length=200, # speech is longer
is_training=False,
hidden_size=16,
feature_projection_input_dim=16,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1,
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
mask_time_prob=0.5,
mask_time_length=2,
vocab_size=32,
do_stable_layer_norm=False,
num_adapter_layers=2,
adapter_stride=2,
tdnn_dim=(32, 32),
tdnn_kernel=(5, 3),
tdnn_dilation=(1, 2),
xvector_output_dim=32,
position_embeddings_type="relative",
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feature_projection_input_dim = feature_projection_input_dim
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.num_adapter_layers = num_adapter_layers
self.adapter_stride = adapter_stride
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.scope = scope
self.tdnn_dim = tdnn_dim
self.tdnn_kernel = tdnn_kernel
self.tdnn_dilation = tdnn_dilation
self.xvector_output_dim = xvector_output_dim
self.position_embeddings_type = position_embeddings_type
self.output_seq_length = self.seq_length
self.encoder_seq_length = self.output_seq_length
self.adapter_output_seq_length = self.output_seq_length
for _ in range(num_adapter_layers):
self.adapter_output_seq_length = (self.adapter_output_seq_length - 1) // adapter_stride + 1
# Ignore copy
def prepare_config_and_inputs(self, position_embeddings_type="relative"):
input_shape = [self.batch_size, self.seq_length, self.feature_projection_input_dim]
input_features = floats_tensor(input_shape, self.vocab_size)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config(position_embeddings_type=position_embeddings_type)
return config, input_features, attention_mask
# Ignore copy
def get_config(self, position_embeddings_type="relative"):
return Wav2Vec2BertConfig(
hidden_size=self.hidden_size,
feature_projection_input_dim=self.feature_projection_input_dim,
mask_time_prob=self.mask_time_prob,
mask_time_length=self.mask_time_length,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
do_stable_layer_norm=self.do_stable_layer_norm,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
num_adapter_layers=self.num_adapter_layers,
adapter_stride=self.adapter_stride,
tdnn_dim=self.tdnn_dim,
tdnn_kernel=self.tdnn_kernel,
tdnn_dilation=self.tdnn_dilation,
xvector_output_dim=self.xvector_output_dim,
position_embeddings_type=position_embeddings_type,
)
def create_and_check_model(self, config, input_features, attention_mask):
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter(self, config, input_features, attention_mask):
config.add_adapter = True
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter_for_ctc(self, config, input_features, attention_mask):
config.add_adapter = True
config.output_hidden_size = 2 * config.hidden_size
model = Wav2Vec2BertForCTC(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
)
# Ignore copy
def create_and_check_model_with_intermediate_ffn_before_adapter(self, config, input_features, attention_mask):
config.add_adapter = True
config.use_intermediate_ffn_before_adapter = True
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
)
# also try with different adapter proj dim
config.output_hidden_size = 8
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
)
def create_and_check_model_with_adapter_proj_dim(self, config, input_features, attention_mask):
config.add_adapter = True
config.output_hidden_size = 8
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_features, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
)
def create_and_check_model_float16(self, config, input_features, attention_mask):
model = Wav2Vec2BertModel(config=config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = Wav2Vec2BertModel.from_pretrained(tmpdirname, torch_dtype=torch.float16)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_features.type(dtype=torch.float16), attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_features, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = Wav2Vec2BertModel(config=config)
model.to(torch_device)
model.eval()
input_features = input_features[:3]
attention_mask = torch.ones(input_features.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_features, attention_mask=attention_mask).last_hidden_state
for i in range(input_features.shape[0]):
input_slice = input_features[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_features, *args):
model = Wav2Vec2BertForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_features = input_features[:3]
# Ignore copy
attention_mask = torch.ones(input_features.shape[:2], device=torch_device, dtype=torch.long)
input_lengths = [input_features.shape[1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_features, *args):
model = Wav2Vec2BertForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_features = input_features[:3]
# Ignore copy
attention_mask = torch.ones(input_features.shape[:2], device=torch_device, dtype=torch.long)
input_lengths = [input_features.shape[1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_features.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_features, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_features, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_features, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2BertForCTC(config=config)
model.to(torch_device)
model.train()
# Ignore copy
input_features = input_features[:3]
input_lengths = [input_features.shape[1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lengths are at least
# one shorter than logit lengths to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_features, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_features, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2BertForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_features = input_features[:3]
# Ignore copy
input_lengths = [input_features.shape[1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_features.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
loss = model(input_features, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_xvector_training(self, config, input_features, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2BertForXVector(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_features = input_features[:3]
input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_features.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_features[i, input_lengths[i] :] = 0.0
loss = model(input_features, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_features, *args):
model = Wav2Vec2BertForCTC(config)
model.to(torch_device)
model.train()
input_features = input_features[:3]
input_lengths = [input_features.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_features.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with self.parent.assertRaises(ValueError):
model(input_features, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_features, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_features": input_features, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
# Copied from tests.models.wav2vec2_conformer.test_modeling_wav2vec2_conformer.Wav2Vec2ConformerModelTest with Conformer->Bert, input_values->input_features
class Wav2Vec2BertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
# Ignore copy
all_model_classes = (
(
Wav2Vec2BertForCTC,
Wav2Vec2BertModel,
Wav2Vec2BertForSequenceClassification,
Wav2Vec2BertForAudioFrameClassification,
Wav2Vec2BertForXVector,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"audio-classification": Wav2Vec2BertForSequenceClassification,
"automatic-speech-recognition": Wav2Vec2BertForCTC,
"feature-extraction": Wav2Vec2BertModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = Wav2Vec2BertModelTester(self)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2BertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_relative(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative")
self.model_tester.create_and_check_model(*config_and_inputs)
# Ignore copy
def test_model_with_relative_key(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative_key")
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_rotary(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary")
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_no_rel_pos(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type=None)
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
def test_model_with_adapter_for_ctc(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs)
# Ignore copy
def test_model_with_intermediate_ffn_before_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_intermediate_ffn_before_adapter(*config_and_inputs)
def test_model_with_adapter_proj_dim(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
@require_torch_accelerator
@require_torch_fp16
def test_model_float16_with_relative(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative")
self.model_tester.create_and_check_model_float16(*config_and_inputs)
# Ignore copy
@require_torch_accelerator
@require_torch_fp16
def test_model_float16_with_relative_key(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="relative_key")
self.model_tester.create_and_check_model_float16(*config_and_inputs)
@require_torch_accelerator
@require_torch_fp16
def test_model_float16_with_rotary(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs(position_embeddings_type="rotary")
self.model_tester.create_and_check_model_float16(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_xvector_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_xvector_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# Ignore copy
@unittest.skip(reason="Wav2Vec2Bert has no inputs_embeds")
def test_inputs_embeds(self):
pass
# Ignore copy
@unittest.skip(reason="`input_ids` is renamed to `input_features`")
def test_forward_signature(self):
pass
# Ignore copy
@unittest.skip(reason="Wav2Vec2Bert has no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
# Ignore copy
@unittest.skip(reason="Wav2Vec2Bert has no inputs_embeds")
def test_model_common_attributes(self):
pass
# Ignore copy
@unittest.skip(reason="non-robust architecture does not exist in Flax")
@is_pt_flax_cross_test
def test_equivalence_flax_to_pt(self):
pass
# Ignore copy
@unittest.skip(reason="non-robust architecture does not exist in Flax")
@is_pt_flax_cross_test
def test_equivalence_pt_to_flax(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_features = inputs_dict["input_features"]
input_lengths = torch.tensor(
[input_features.shape[1] for _ in range(input_features.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_features.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"pos_bias_v",
"pos_bias_u",
"pointwise_conv1",
"pointwise_conv2",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "pos_bias_u") and module.pos_bias_u is not None:
module.pos_bias_u.data.fill_(3)
if hasattr(module, "pos_bias_v") and module.pos_bias_v is not None:
module.pos_bias_v.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
# Ignore copy
@unittest.skip(reason="Kept to make #Copied from working")
def test_mask_feature_prob_ctc(self):
pass
# Ignore copy
@unittest.skip(reason="Kept to make #Copied from working")
def test_mask_time_prob_ctc(self):
pass
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
# Ignore copy
model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
self.assertIsNotNone(model)
@require_torch
# Copied from tests.models.wav2vec2_conformer.test_modeling_wav2vec2_conformer.Wav2Vec2ConformerUtilsTest with Conformer->Bert, input_values->input_features
class Wav2Vec2BertUtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_low_prob(self):
# with these settings num_masked_spans=0.5, which means probabilistic rounding
# ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
# the other 5 out of 10, cases num_masked_spans=1
n_trials = 100
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
count_dimensions_masked = 0
count_dimensions_not_masked = 0
for _ in range(n_trials):
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
num_masks = torch.sum(mask).item()
if num_masks > 0:
count_dimensions_masked += 1
else:
count_dimensions_not_masked += 1
# as we test for at least 10 masked dimension and at least
# 10 non-masked dimension, this test could fail with probability:
# P(100 coin flips, at most 9 heads) = 1.66e-18
self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
def test_compute_mask_indices_attn_mask_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
attention_mask[:2, sequence_length // 2 :] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
)
mask = torch.from_numpy(mask).to(torch_device)
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
def test_compute_mask_indices_short_audio(self):
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
# force one example to be heavily padded
attention_mask[0, 5:] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
)
# make sure that non-padded examples cannot be padded
self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())
# Ignore copy
@unittest.skip(reason="Kept to make #Copied from working. Test a class used for pretraining, not yet supported.")
def test_compute_perplexity(self):
pass
def test_sample_negatives(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
sequence_length, hidden_size
) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# sample negative indices
sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
def test_sample_negatives_with_mask(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
# second half of last input tensor is padded
mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
mask[-1, sequence_length // 2 :] = 0
features = (torch.arange(sequence_length * hidden_size, device=torch_device) // hidden_size).view(
sequence_length, hidden_size
) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# replace masked feature vectors with -100 to test that those are not sampled
features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
# sample negative indices
sampled_negative_indices = _sample_negative_indices(
(batch_size, sequence_length), num_negatives, mask.cpu().numpy()
)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue((negatives >= 0).all().item())
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertTrue(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
@require_torch
@slow
class Wav2Vec2BertModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)])
speech_samples = speech_samples[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_w2v2_bert(self):
model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0")
model.to(torch_device)
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
input_speech = self._load_datasamples(2)
inputs = feature_extractor(input_speech, return_tensors="pt", padding=True).to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**inputs, output_attentions=True)
# fmt: off
expected_slice_0 = torch.tensor(
[[-0.0098, -0.0570, -0.1286, 0.0439, -0.1037, -0.0235],
[-0.0767, 0.0574, -0.3224, 0.0482, 0.0440, -0.0193],
[ 0.0220, -0.0878, -0.2027, -0.0028, -0.0666, 0.0721],
[ 0.0307, -0.1099, 0.0273, -0.0416, -0.0715, 0.0094],
[ 0.0758, -0.0291, 0.1084, 0.0004, -0.0751, -0.0116],
[ 0.0349, -0.0343, -0.0098, 0.0415, -0.0617, 0.0241],
[-0.0193, -0.0171, 0.1965, 0.0797, -0.0308, 0.2033],
[-0.0323, -0.0315, 0.0948, 0.0944, -0.0254, 0.1241],
[-0.0493, 0.0010, -0.1762, 0.0034, -0.0787, 0.0832],
[ 0.0043, -0.1228, -0.0739, 0.0266, -0.0337, -0.0068]]
).to(torch_device)
# fmt: on
# fmt: off
expected_slice_1 = torch.tensor(
[[-0.0348, -0.0521, -0.3036, 0.0285, -0.0715, -0.0453],
[-0.0102, 0.0114, -0.3266, 0.0027, -0.0558, 0.0038],
[ 0.0454, 0.0148, -0.2418, -0.0392, -0.0455, 0.0478],
[-0.0013, 0.0825, -0.1730, -0.0091, -0.0426, 0.0360],
[-0.0227, 0.0687, -0.1168, 0.0569, -0.0160, 0.0759],
[-0.0318, 0.0562, -0.0508, 0.0605, 0.0150, 0.0953],
[-0.0415, 0.0438, 0.0233, 0.0336, 0.0262, 0.0860],
[-0.0163, 0.0048, 0.0807, 0.0119, 0.0712, 0.0158],
[ 0.0244, -0.0145, 0.0262, -0.0237, 0.0283, -0.0125],
[-0.0587, -0.0516, -0.0368, -0.0196, 0.0307, -0.1434]]
).to(torch_device)
# fmt: on
self.assertTrue((outputs.last_hidden_state[0, 25:35, 4:10] - expected_slice_0).abs().max() <= 1e-4)
self.assertTrue((outputs.last_hidden_state[1, 25:35, 4:10] - expected_slice_1).abs().max() <= 1e-4)
self.assertAlmostEqual(outputs.last_hidden_state[1].mean().item(), 3.3123e-05)
self.assertAlmostEqual(outputs.last_hidden_state[1].std().item(), 0.1545, delta=2e-5)
self.assertListEqual(list(outputs.last_hidden_state.shape), [2, 326, 1024])