537 lines
23 KiB
Python
537 lines
23 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch VideoLlava model."""
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import requests
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
from transformers import (
|
|
VideoLlavaConfig,
|
|
VideoLlavaForConditionalGeneration,
|
|
VideoLlavaProcessor,
|
|
is_torch_available,
|
|
is_vision_available,
|
|
)
|
|
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device
|
|
|
|
from ...generation.test_utils import GenerationTesterMixin
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
class VideoLlavaVisionText2TextModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
ignore_index=-100,
|
|
image_token_index=0,
|
|
video_token_index=1,
|
|
projector_hidden_act="gelu",
|
|
seq_length=13,
|
|
num_frames=8,
|
|
vision_feature_select_strategy="default",
|
|
vision_feature_layer=-1,
|
|
text_config={
|
|
"model_type": "llama",
|
|
"seq_length": 13,
|
|
"is_training": True,
|
|
"use_input_mask": True,
|
|
"use_token_type_ids": False,
|
|
"use_labels": True,
|
|
"vocab_size": 99,
|
|
"hidden_size": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"hidden_act": "gelu",
|
|
"hidden_dropout_prob": 0.1,
|
|
"attention_probs_dropout_prob": 0.1,
|
|
"max_position_embeddings": 2048, # we need it high because videos are 8 frames
|
|
"type_vocab_size": 16,
|
|
"type_sequence_label_size": 2,
|
|
"initializer_range": 0.02,
|
|
"num_labels": 3,
|
|
"num_choices": 4,
|
|
"pad_token_id": 0,
|
|
},
|
|
is_training=True,
|
|
vision_config={
|
|
"model_type": "clip_vision_model",
|
|
"batch_size": 12,
|
|
"image_size": 30,
|
|
"patch_size": 2,
|
|
"num_channels": 3,
|
|
"is_training": True,
|
|
"hidden_size": 32,
|
|
"projection_dim": 32,
|
|
"num_hidden_layers": 2,
|
|
"num_attention_heads": 4,
|
|
"intermediate_size": 37,
|
|
"dropout": 0.1,
|
|
"attention_dropout": 0.1,
|
|
"initializer_range": 0.02,
|
|
},
|
|
):
|
|
self.parent = parent
|
|
self.ignore_index = ignore_index
|
|
self.image_token_index = image_token_index
|
|
self.video_token_index = video_token_index
|
|
self.projector_hidden_act = projector_hidden_act
|
|
self.vision_feature_select_strategy = vision_feature_select_strategy
|
|
self.vision_feature_layer = vision_feature_layer
|
|
self.text_config = text_config
|
|
self.vision_config = vision_config
|
|
self.seq_length = seq_length
|
|
self.num_frames = num_frames
|
|
|
|
self.num_hidden_layers = text_config["num_hidden_layers"]
|
|
self.vocab_size = text_config["vocab_size"]
|
|
self.hidden_size = text_config["hidden_size"]
|
|
self.num_attention_heads = text_config["num_attention_heads"]
|
|
self.is_training = is_training
|
|
|
|
self.batch_size = 5
|
|
self.num_channels = 3
|
|
self.image_size = 224
|
|
self.encoder_seq_length = 2044
|
|
|
|
def get_config(self):
|
|
return VideoLlavaConfig(
|
|
text_config=self.text_config,
|
|
vision_config=self.vision_config,
|
|
ignore_index=self.ignore_index,
|
|
image_token_index=self.image_token_index,
|
|
video_token_index=self.video_token_index,
|
|
projector_hidden_act=self.projector_hidden_act,
|
|
vision_feature_select_strategy=self.vision_feature_select_strategy,
|
|
vision_feature_layer=self.vision_feature_layer,
|
|
)
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values_videos = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.num_frames,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
|
|
pixel_values_images = floats_tensor(
|
|
[
|
|
self.batch_size,
|
|
self.vision_config["num_channels"],
|
|
self.vision_config["image_size"],
|
|
self.vision_config["image_size"],
|
|
]
|
|
)
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values_images, pixel_values_videos
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values_images, pixel_values_videos = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
|
|
# we are giving 3 videos and 3 images. Need to pass in image and video tokens, both
|
|
# also need to make sure no other special tokens are set
|
|
input_ids[(input_ids == 0) | (input_ids == 1)] = 3
|
|
input_ids[:, 0] = config.video_token_index
|
|
input_ids[:, 1:2] = config.image_token_index
|
|
inputs_dict = {
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"pixel_values_images": pixel_values_images,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_batched_test(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, _, pixel_values_videos = config_and_inputs
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1
|
|
attention_mask = input_ids.ne(1).to(torch_device)
|
|
|
|
# make sure no other special tokens are set
|
|
input_ids[(input_ids == 0) | (input_ids == 1)] = 3
|
|
input_ids[:, 0] = config.video_token_index
|
|
inputs_dict = {
|
|
"pixel_values_videos": pixel_values_videos,
|
|
"input_ids": input_ids,
|
|
"attention_mask": attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class VideoLlavaForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
|
|
"""
|
|
Model tester for `VideoLlavaForConditionalGeneration`.
|
|
"""
|
|
|
|
all_model_classes = (VideoLlavaForConditionalGeneration,) if is_torch_available() else ()
|
|
fx_compatible = False
|
|
test_pruning = False
|
|
test_resize_embeddings = True
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = VideoLlavaVisionText2TextModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=VideoLlavaConfig, has_text_modality=False)
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
|
|
)
|
|
def test_training_gradient_checkpointing_use_reentrant_false(self):
|
|
pass
|
|
|
|
def test_mixed_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# test that the forward does not fail
|
|
with torch.no_grad():
|
|
_ = model(**inputs)
|
|
|
|
# if we remove some images from inputs leaving only one
|
|
# image number mismatch error should raise
|
|
inputs["pixel_values_images"] = inputs["pixel_values_images"][:1]
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
def test_video_only_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# replace video_token with dummy id which is not video token id
|
|
# error that video-tokens and num-of-video-inputs mismatch will be raised
|
|
inputs["input_ids"][:, 1:2] = 2
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
inputs["pixel_values_images"] = None
|
|
_ = model(**inputs)
|
|
|
|
def test_image_only_input(self):
|
|
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config).to(torch_device).eval()
|
|
# set dummy id, which is not image token id, same as above
|
|
inputs["input_ids"][:, :1] = 2
|
|
with self.assertRaises(ValueError):
|
|
_ = model(**inputs)
|
|
|
|
inputs["pixel_values_videos"] = None
|
|
_ = model(**inputs)
|
|
|
|
def test_batching_equivalence(self):
|
|
def recursive_check(batched_object, single_row_object, model_name, key):
|
|
if isinstance(batched_object, (list, tuple)):
|
|
for batched_object_value, single_row_object_value in zip(batched_object, single_row_object):
|
|
recursive_check(batched_object_value, single_row_object_value, model_name, key)
|
|
# do not compare returned loss (0-dim tensor) / codebook ids (int) / caching objects
|
|
elif batched_object is None or not isinstance(batched_object, torch.Tensor):
|
|
return
|
|
elif batched_object.dim() == 0:
|
|
return
|
|
else:
|
|
batched_row = batched_object[:1]
|
|
self.assertFalse(
|
|
torch.isnan(batched_row).any(), f"Batched output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(batched_row).any(), f"Batched output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isnan(single_row_object).any(), f"Single row output has `nan` in {model_name} for key={key}"
|
|
)
|
|
self.assertFalse(
|
|
torch.isinf(single_row_object).any(), f"Single row output has `inf` in {model_name} for key={key}"
|
|
)
|
|
self.assertTrue(
|
|
(torch.max(torch.abs(batched_row - single_row_object))) <= 1e-03,
|
|
msg=(
|
|
f"Batched and Single row outputs are not equal in {model_name} for key={key}. "
|
|
f"Difference={torch.max(torch.abs(batched_row - single_row_object))}."
|
|
),
|
|
)
|
|
|
|
config, batched_input = self.model_tester.prepare_config_and_inputs_for_batched_test()
|
|
|
|
for model_class in self.all_model_classes:
|
|
config.output_hidden_states = True
|
|
|
|
model_name = model_class.__name__
|
|
batched_input_prepared = self._prepare_for_class(batched_input, model_class)
|
|
model = model_class(config).to(torch_device).eval()
|
|
|
|
single_row_input = {}
|
|
for key, value in batched_input_prepared.items():
|
|
single_row_input[key] = value[:1]
|
|
|
|
with torch.no_grad():
|
|
model_batched_output = model(**batched_input_prepared)
|
|
model_row_output = model(**single_row_input)
|
|
|
|
for key in model_batched_output:
|
|
recursive_check(model_batched_output[key], model_row_output[key], model_name, key)
|
|
|
|
|
|
@require_torch
|
|
class VideoLlavaForConditionalGenerationIntegrationTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
|
|
prompt = "USER: <video>Why is this video funny? ASSISTANT:"
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
inputs = self.processor(prompt, videos=video_file, return_tensors="pt")
|
|
|
|
EXPECTED_INPUT_IDS = torch.tensor([[1, 3148, 1001, 29901, 29871, 32001, 3750, 338, 445, 4863, 2090, 1460, 29973, 319, 1799, 9047, 13566, 29901]]) # fmt: skip
|
|
self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS))
|
|
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=20)
|
|
EXPECTED_DECODED_TEXT = "USER: Why is this video funny? ASSISTANT: The video is funny because the baby is playing with a Wii remote while sitting on a bed" # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_mixed_inputs(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
|
|
prompts = [
|
|
"USER: <image>What are the cats in the image doing? ASSISTANT:",
|
|
"USER: <video>Why is this video funny? ASSISTANT:",
|
|
]
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
inputs = self.processor(prompts, images=[image], videos=[video_file], padding=True, return_tensors="pt")
|
|
output = model.generate(**inputs, do_sample=False, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = [
|
|
'USER: What are the cats in the image doing? ASSISTANT: The cats in the image are lying down on a red couch, possibly sleeping or rest',
|
|
'USER: Why is this video funny? ASSISTANT: The video is funny because the baby is playing with a Wii remote while sitting on a bed'
|
|
] # fmt: skip
|
|
|
|
self.assertEqual(
|
|
self.processor.batch_decode(output, skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_llama(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
|
|
prompt = "USER: <video>Describe the video in details. ASSISTANT:"
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=900, do_sample=False)
|
|
EXPECTED_DECODED_TEXT = "USER: Describe the video in details. ASSISTANT: The video features a young child sitting on a bed, holding a book and reading it. " \
|
|
"The child appears to be enjoying the book, as they are fully engaged in the reading process. The bed is located in a bedroom, and there is a chair nearby. " \
|
|
"The child is wearing a light blue shirt and pink pants, and they have glasses on. The room is well-lit, and there is a clock on the wall. The child seems " \
|
|
"to be in a comfortable and relaxed environment, which is conducive to reading and learning. Overall, the video captures a heartwarming moment of a child " \
|
|
"engaging in a simple yet essential activity, which is reading." # fmt: skip
|
|
|
|
self.assertEqual(
|
|
processor.decode(output[0], skip_special_tokens=True),
|
|
EXPECTED_DECODED_TEXT,
|
|
)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_llama_batched(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf")
|
|
processor.tokenizer.padding_side = "left"
|
|
|
|
prompts = [
|
|
"USER: <video>What is the baby doing? ASSISTANT:",
|
|
"USER: <video>Who is sitting next to the woman? ASSISTANT:",
|
|
]
|
|
video_1 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset")
|
|
)
|
|
video_2 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo_2.npy", repo_type="dataset")
|
|
)
|
|
|
|
inputs = processor(prompts, videos=[video_1, video_2], return_tensors="pt", padding=True)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
EXPECTED_DECODED_TEXT = [
|
|
'USER: What is the baby doing? ASSISTANT: The baby is sitting on a bed and reading a book.Ъ',
|
|
'USER: Who is sitting next to the woman? ASSISTANT: A small dog is sitting next to the woman.Ъ'
|
|
] # fmt: skip
|
|
|
|
self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_small_model_integration_test_llama_batched_regression(self):
|
|
# Let' s make sure we test the preprocessing to replace what is used
|
|
|
|
# Multi-image & multi-prompt (e.g. 3 images and 2 prompts now fails with SDPA, this tests if "eager" works as before)
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained(
|
|
"LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True, attn_implementation="eager"
|
|
)
|
|
processor = VideoLlavaProcessor.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", pad_token="<pad>")
|
|
processor.tokenizer.padding_side = "left"
|
|
|
|
prompts = [
|
|
"USER: <video>What is the baby doing? ASSISTANT:",
|
|
"USER: <video>Who is sitting next to the woman? ASSISTANT: A small dog is sitting next to the woman. USER: <video>What about this video? ASSITANT:",
|
|
]
|
|
video_1 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset")
|
|
)
|
|
video_2 = np.load(
|
|
hf_hub_download(repo_id="raushan-testing-hf/videos-test", filename="video_demo_2.npy", repo_type="dataset")
|
|
)
|
|
|
|
inputs = processor(prompts, videos=[video_1, video_2, video_1], return_tensors="pt", padding=True)
|
|
|
|
output = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
# fmt: off
|
|
EXPECTED_DECODED_TEXT = [
|
|
'USER: What is the baby doing? ASSISTANT: The baby is sitting on a bed and reading a book.Ъ',
|
|
'USER: Who is sitting next to the woman? ASSISTANT: A small dog is sitting next to the woman. USER: What about this video? ASSITANT: The video shows a baby sitting on a bed, reading a book. The baby is wearing glass'
|
|
]
|
|
# fmt: on
|
|
|
|
self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT)
|
|
|
|
@slow
|
|
@require_bitsandbytes
|
|
def test_video_llava_index_error_bug(self):
|
|
# This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore
|
|
# Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for
|
|
# more details
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained("LanguageBind/Video-LLaVA-7B-hf", load_in_4bit=True)
|
|
|
|
# Simulate a super long prompt
|
|
user_prompt = "Describe the video:?\n" * 200
|
|
prompt = f"USER: <video>{user_prompt}ASSISTANT:"
|
|
video_file = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test", filename="video_demo.npy", repo_type="dataset"
|
|
)
|
|
video_file = np.load(video_file)
|
|
inputs = self.processor(prompt, videos=video_file, return_tensors="pt").to(torch_device, torch.float16)
|
|
|
|
# Make sure that `generate` works
|
|
_ = model.generate(**inputs, max_new_tokens=20)
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
def test_video_llava_merge_inputs_error_bug(self):
|
|
# This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore
|
|
model = VideoLlavaForConditionalGeneration.from_pretrained(
|
|
"LanguageBind/Video-LLaVA-7B-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True
|
|
).to(torch_device)
|
|
|
|
# Simulate some user inputs
|
|
pixel_values_videos = torch.randn(
|
|
(2, 8, 3, 224, 224),
|
|
dtype=torch.float,
|
|
device=torch_device,
|
|
)
|
|
# fmt: off
|
|
input_ids = torch.tensor(
|
|
[
|
|
[
|
|
32001, 32001, 1, 15043, 7084, 32000, 32000, 32000, 32000, 32000, 32000, 32000, 32000, 29871, 13, 7900
|
|
],
|
|
[
|
|
1, 15043, 7084, 29901, 29871, 32000, 32000, 32000, 32000, 32000, 32000, 32000, 32000, 29871, 13, 7900
|
|
],
|
|
],
|
|
dtype=torch.long,
|
|
device=torch_device,
|
|
)
|
|
# fmt: on
|
|
attention_mask = torch.tensor(
|
|
[[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]],
|
|
dtype=torch.long,
|
|
device=torch_device,
|
|
)
|
|
|
|
# Make sure that the loss is properly computed
|
|
loss = model(
|
|
pixel_values_videos=pixel_values_videos,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
labels=input_ids,
|
|
).loss
|
|
loss.backward()
|