311 lines
13 KiB
Python
311 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
from datasets import load_dataset
|
|
|
|
from transformers.testing_utils import require_torch, require_vision, slow
|
|
from transformers.utils import is_torch_available, is_vision_available
|
|
|
|
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers.models.seggpt.modeling_seggpt import SegGptImageSegmentationOutput
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import SegGptImageProcessor
|
|
|
|
|
|
class SegGptImageProcessingTester(unittest.TestCase):
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=7,
|
|
num_channels=3,
|
|
image_size=18,
|
|
min_resolution=30,
|
|
max_resolution=400,
|
|
do_resize=True,
|
|
size=None,
|
|
do_normalize=True,
|
|
image_mean=[0.5, 0.5, 0.5],
|
|
image_std=[0.5, 0.5, 0.5],
|
|
):
|
|
size = size if size is not None else {"height": 18, "width": 18}
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.num_channels = num_channels
|
|
self.image_size = image_size
|
|
self.min_resolution = min_resolution
|
|
self.max_resolution = max_resolution
|
|
self.do_resize = do_resize
|
|
self.size = size
|
|
self.do_normalize = do_normalize
|
|
self.image_mean = image_mean
|
|
self.image_std = image_std
|
|
|
|
def prepare_image_processor_dict(self):
|
|
return {
|
|
"image_mean": self.image_mean,
|
|
"image_std": self.image_std,
|
|
"do_normalize": self.do_normalize,
|
|
"do_resize": self.do_resize,
|
|
"size": self.size,
|
|
}
|
|
|
|
def expected_output_image_shape(self, images):
|
|
return self.num_channels, self.size["height"], self.size["width"]
|
|
|
|
def expected_post_processed_shape(self):
|
|
return self.size["height"] // 2, self.size["width"]
|
|
|
|
def get_fake_image_segmentation_output(self):
|
|
torch.manual_seed(42)
|
|
return SegGptImageSegmentationOutput(
|
|
pred_masks=torch.rand(self.batch_size, self.num_channels, self.size["height"], self.size["width"])
|
|
)
|
|
|
|
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
|
|
return prepare_image_inputs(
|
|
batch_size=self.batch_size,
|
|
num_channels=self.num_channels,
|
|
min_resolution=self.min_resolution,
|
|
max_resolution=self.max_resolution,
|
|
equal_resolution=equal_resolution,
|
|
numpify=numpify,
|
|
torchify=torchify,
|
|
)
|
|
|
|
|
|
def prepare_mask():
|
|
ds = load_dataset("EduardoPacheco/seggpt-example-data")["train"]
|
|
return ds[0]["mask"].convert("L")
|
|
|
|
|
|
def prepare_img():
|
|
ds = load_dataset("EduardoPacheco/seggpt-example-data")["train"]
|
|
images = [image.convert("RGB") for image in ds["image"]]
|
|
masks = [image.convert("RGB") for image in ds["mask"]]
|
|
return images, masks
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class SegGptImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
|
|
image_processing_class = SegGptImageProcessor if is_vision_available() else None
|
|
|
|
def setUp(self):
|
|
self.image_processor_tester = SegGptImageProcessingTester(self)
|
|
|
|
@property
|
|
def image_processor_dict(self):
|
|
return self.image_processor_tester.prepare_image_processor_dict()
|
|
|
|
def test_image_processor_properties(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
self.assertTrue(hasattr(image_processing, "image_mean"))
|
|
self.assertTrue(hasattr(image_processing, "image_std"))
|
|
self.assertTrue(hasattr(image_processing, "do_normalize"))
|
|
self.assertTrue(hasattr(image_processing, "do_resize"))
|
|
self.assertTrue(hasattr(image_processing, "size"))
|
|
|
|
def test_image_processor_from_dict_with_kwargs(self):
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
|
|
self.assertEqual(image_processor.size, {"height": 18, "width": 18})
|
|
|
|
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
|
|
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
|
|
|
|
def test_image_processor_palette(self):
|
|
num_labels = 3
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
palette = image_processing.get_palette(num_labels)
|
|
self.assertEqual(len(palette), num_labels + 1)
|
|
self.assertEqual(palette[0], (0, 0, 0))
|
|
|
|
def test_mask_equivalence(self):
|
|
image_processor = SegGptImageProcessor()
|
|
|
|
mask_binary = prepare_mask()
|
|
mask_rgb = mask_binary.convert("RGB")
|
|
|
|
inputs_binary = image_processor(images=None, prompt_masks=mask_binary, return_tensors="pt")
|
|
inputs_rgb = image_processor(images=None, prompt_masks=mask_rgb, return_tensors="pt", do_convert_rgb=False)
|
|
|
|
self.assertTrue((inputs_binary["prompt_masks"] == inputs_rgb["prompt_masks"]).all().item())
|
|
|
|
def test_mask_to_rgb(self):
|
|
image_processing = self.image_processing_class(**self.image_processor_dict)
|
|
mask = prepare_mask()
|
|
mask = np.array(mask)
|
|
mask = (mask > 0).astype(np.uint8)
|
|
|
|
def check_two_colors(image, color1=(0, 0, 0), color2=(255, 255, 255)):
|
|
pixels = image.transpose(1, 2, 0).reshape(-1, 3)
|
|
unique_colors = np.unique(pixels, axis=0)
|
|
if len(unique_colors) == 2 and (color1 in unique_colors) and (color2 in unique_colors):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
num_labels = 1
|
|
palette = image_processing.get_palette(num_labels)
|
|
|
|
# Should only duplicate repeat class indices map, hence only (0,0,0) and (1,1,1)
|
|
mask_duplicated = image_processing.mask_to_rgb(mask)
|
|
# Mask using palette, since only 1 class is present we have colors (0,0,0) and (255,255,255)
|
|
mask_painted = image_processing.mask_to_rgb(mask, palette=palette)
|
|
|
|
self.assertTrue(check_two_colors(mask_duplicated, color2=(1, 1, 1)))
|
|
self.assertTrue(check_two_colors(mask_painted, color2=(255, 255, 255)))
|
|
|
|
def test_post_processing_semantic_segmentation(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
outputs = self.image_processor_tester.get_fake_image_segmentation_output()
|
|
post_processed = image_processor.post_process_semantic_segmentation(outputs)
|
|
|
|
self.assertEqual(len(post_processed), self.image_processor_tester.batch_size)
|
|
|
|
expected_semantic_map_shape = self.image_processor_tester.expected_post_processed_shape()
|
|
self.assertEqual(post_processed[0].shape, expected_semantic_map_shape)
|
|
|
|
@slow
|
|
def test_pixel_values(self):
|
|
images, masks = prepare_img()
|
|
input_image = images[1]
|
|
prompt_image = images[0]
|
|
prompt_mask = masks[0]
|
|
|
|
image_processor = SegGptImageProcessor.from_pretrained("BAAI/seggpt-vit-large")
|
|
|
|
inputs = image_processor(
|
|
images=input_image,
|
|
prompt_images=prompt_image,
|
|
prompt_masks=prompt_mask,
|
|
return_tensors="pt",
|
|
do_convert_rgb=False,
|
|
)
|
|
|
|
# Verify pixel values
|
|
expected_prompt_pixel_values = torch.tensor(
|
|
[
|
|
[[-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965], [-0.6965, -0.6965, -0.6965]],
|
|
[[1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583], [1.6583, 1.6583, 1.6583]],
|
|
[[2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088], [2.3088, 2.3088, 2.3088]],
|
|
]
|
|
)
|
|
|
|
expected_pixel_values = torch.tensor(
|
|
[
|
|
[[1.6324, 1.6153, 1.5810], [1.6153, 1.5982, 1.5810], [1.5810, 1.5639, 1.5639]],
|
|
[[1.2731, 1.2556, 1.2206], [1.2556, 1.2381, 1.2031], [1.2206, 1.2031, 1.1681]],
|
|
[[1.6465, 1.6465, 1.6465], [1.6465, 1.6465, 1.6465], [1.6291, 1.6291, 1.6291]],
|
|
]
|
|
)
|
|
|
|
expected_prompt_masks = torch.tensor(
|
|
[
|
|
[[-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179], [-2.1179, -2.1179, -2.1179]],
|
|
[[-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357], [-2.0357, -2.0357, -2.0357]],
|
|
[[-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044], [-1.8044, -1.8044, -1.8044]],
|
|
]
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(inputs.pixel_values[0, :, :3, :3], expected_pixel_values, atol=1e-4))
|
|
self.assertTrue(
|
|
torch.allclose(inputs.prompt_pixel_values[0, :, :3, :3], expected_prompt_pixel_values, atol=1e-4)
|
|
)
|
|
self.assertTrue(torch.allclose(inputs.prompt_masks[0, :, :3, :3], expected_prompt_masks, atol=1e-4))
|
|
|
|
def test_prompt_mask_equivalence(self):
|
|
image_processor = self.image_processing_class(**self.image_processor_dict)
|
|
image_size = self.image_processor_tester.image_size
|
|
|
|
# Single Mask Examples
|
|
expected_single_shape = [1, 3, image_size, image_size]
|
|
|
|
# Single Semantic Map (2D)
|
|
image_np_2d = np.ones((image_size, image_size))
|
|
image_pt_2d = torch.ones((image_size, image_size))
|
|
image_pil_2d = Image.fromarray(image_np_2d)
|
|
|
|
inputs_np_2d = image_processor(images=None, prompt_masks=image_np_2d, return_tensors="pt")
|
|
inputs_pt_2d = image_processor(images=None, prompt_masks=image_pt_2d, return_tensors="pt")
|
|
inputs_pil_2d = image_processor(images=None, prompt_masks=image_pil_2d, return_tensors="pt")
|
|
|
|
self.assertTrue((inputs_np_2d["prompt_masks"] == inputs_pt_2d["prompt_masks"]).all().item())
|
|
self.assertTrue((inputs_np_2d["prompt_masks"] == inputs_pil_2d["prompt_masks"]).all().item())
|
|
self.assertEqual(list(inputs_np_2d["prompt_masks"].shape), expected_single_shape)
|
|
|
|
# Single RGB Images (3D)
|
|
image_np_3d = np.ones((3, image_size, image_size))
|
|
image_pt_3d = torch.ones((3, image_size, image_size))
|
|
image_pil_3d = Image.fromarray(image_np_3d.transpose(1, 2, 0).astype(np.uint8))
|
|
|
|
inputs_np_3d = image_processor(
|
|
images=None, prompt_masks=image_np_3d, return_tensors="pt", do_convert_rgb=False
|
|
)
|
|
inputs_pt_3d = image_processor(
|
|
images=None, prompt_masks=image_pt_3d, return_tensors="pt", do_convert_rgb=False
|
|
)
|
|
inputs_pil_3d = image_processor(
|
|
images=None, prompt_masks=image_pil_3d, return_tensors="pt", do_convert_rgb=False
|
|
)
|
|
|
|
self.assertTrue((inputs_np_3d["prompt_masks"] == inputs_pt_3d["prompt_masks"]).all().item())
|
|
self.assertTrue((inputs_np_3d["prompt_masks"] == inputs_pil_3d["prompt_masks"]).all().item())
|
|
self.assertEqual(list(inputs_np_3d["prompt_masks"].shape), expected_single_shape)
|
|
|
|
# Batched Examples
|
|
expected_batched_shape = [2, 3, image_size, image_size]
|
|
|
|
# Batched Semantic Maps (3D)
|
|
image_np_2d_batched = np.ones((2, image_size, image_size))
|
|
image_pt_2d_batched = torch.ones((2, image_size, image_size))
|
|
|
|
inputs_np_2d_batched = image_processor(images=None, prompt_masks=image_np_2d_batched, return_tensors="pt")
|
|
inputs_pt_2d_batched = image_processor(images=None, prompt_masks=image_pt_2d_batched, return_tensors="pt")
|
|
|
|
self.assertTrue((inputs_np_2d_batched["prompt_masks"] == inputs_pt_2d_batched["prompt_masks"]).all().item())
|
|
self.assertEqual(list(inputs_np_2d_batched["prompt_masks"].shape), expected_batched_shape)
|
|
|
|
# Batched RGB images
|
|
image_np_4d = np.ones((2, 3, image_size, image_size))
|
|
image_pt_4d = torch.ones((2, 3, image_size, image_size))
|
|
|
|
inputs_np_4d = image_processor(
|
|
images=None, prompt_masks=image_np_4d, return_tensors="pt", do_convert_rgb=False
|
|
)
|
|
inputs_pt_4d = image_processor(
|
|
images=None, prompt_masks=image_pt_4d, return_tensors="pt", do_convert_rgb=False
|
|
)
|
|
|
|
self.assertTrue((inputs_np_4d["prompt_masks"] == inputs_pt_4d["prompt_masks"]).all().item())
|
|
self.assertEqual(list(inputs_np_4d["prompt_masks"].shape), expected_batched_shape)
|
|
|
|
# Comparing Single and Batched Examples
|
|
self.assertTrue((inputs_np_2d["prompt_masks"][0] == inputs_np_3d["prompt_masks"][0]).all().item())
|
|
self.assertTrue((inputs_np_2d_batched["prompt_masks"][0] == inputs_np_2d["prompt_masks"][0]).all().item())
|
|
self.assertTrue((inputs_np_2d_batched["prompt_masks"][0] == inputs_np_3d["prompt_masks"][0]).all().item())
|
|
self.assertTrue((inputs_np_2d_batched["prompt_masks"][0] == inputs_np_4d["prompt_masks"][0]).all().item())
|
|
self.assertTrue((inputs_np_2d_batched["prompt_masks"][0] == inputs_np_3d["prompt_masks"][0]).all().item())
|