64 lines
2.2 KiB
Python
64 lines
2.2 KiB
Python
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from transformers import is_torch_available, is_vision_available
|
|
from transformers.testing_utils import (
|
|
require_torch,
|
|
require_torchvision,
|
|
require_vision,
|
|
)
|
|
|
|
|
|
if is_torch_available() and is_vision_available():
|
|
import torch
|
|
|
|
from transformers import FuyuImageProcessor
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
@require_torchvision
|
|
class TestFuyuImageProcessor(unittest.TestCase):
|
|
def setUp(self):
|
|
self.size = {"height": 160, "width": 320}
|
|
self.processor = FuyuImageProcessor(size=self.size, padding_value=1.0)
|
|
self.batch_size = 3
|
|
self.channels = 3
|
|
self.height = 300
|
|
self.width = 300
|
|
|
|
self.image_input = torch.rand(self.batch_size, self.channels, self.height, self.width)
|
|
|
|
self.image_patch_dim_h = 30
|
|
self.image_patch_dim_w = 30
|
|
self.sample_image = np.zeros((450, 210, 3), dtype=np.uint8)
|
|
self.sample_image_pil = Image.fromarray(self.sample_image)
|
|
|
|
def test_patches(self):
|
|
expected_num_patches = self.processor.get_num_patches(image_height=self.height, image_width=self.width)
|
|
|
|
patches_final = self.processor.patchify_image(image=self.image_input)
|
|
assert (
|
|
patches_final.shape[1] == expected_num_patches
|
|
), f"Expected {expected_num_patches} patches, got {patches_final.shape[1]}."
|
|
|
|
def test_scale_to_target_aspect_ratio(self):
|
|
# (h:450, w:210) fitting (160, 320) -> (160, 210*160/450)
|
|
scaled_image = self.processor.resize(self.sample_image, size=self.size)
|
|
self.assertEqual(scaled_image.shape[0], 160)
|
|
self.assertEqual(scaled_image.shape[1], 74)
|
|
|
|
def test_apply_transformation_numpy(self):
|
|
transformed_image = self.processor.preprocess(self.sample_image).images[0][0]
|
|
self.assertEqual(transformed_image.shape[1], 160)
|
|
self.assertEqual(transformed_image.shape[2], 320)
|
|
|
|
def test_apply_transformation_pil(self):
|
|
transformed_image = self.processor.preprocess(self.sample_image_pil).images[0][0]
|
|
self.assertEqual(transformed_image.shape[1], 160)
|
|
self.assertEqual(transformed_image.shape[2], 320)
|