344 lines
13 KiB
Python
344 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Testing suite for the PyTorch Data2VecVision model."""
|
|
|
|
import unittest
|
|
|
|
from transformers import Data2VecVisionConfig
|
|
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
|
|
from transformers.utils import cached_property, is_torch_available, is_vision_available
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
from torch import nn
|
|
|
|
from transformers import (
|
|
Data2VecVisionForImageClassification,
|
|
Data2VecVisionForSemanticSegmentation,
|
|
Data2VecVisionModel,
|
|
)
|
|
from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
|
|
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
|
|
from transformers import BeitImageProcessor
|
|
|
|
|
|
class Data2VecVisionModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
vocab_size=100,
|
|
batch_size=13,
|
|
image_size=30,
|
|
patch_size=2,
|
|
num_channels=3,
|
|
is_training=True,
|
|
use_labels=True,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
type_sequence_label_size=10,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
scope=None,
|
|
out_indices=[0, 1, 2, 3],
|
|
):
|
|
self.parent = parent
|
|
self.vocab_size = 100
|
|
self.batch_size = batch_size
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.num_channels = num_channels
|
|
self.is_training = is_training
|
|
self.use_labels = use_labels
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
self.out_indices = out_indices
|
|
self.num_labels = num_labels
|
|
|
|
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (image_size // patch_size) ** 2
|
|
self.seq_length = num_patches + 1
|
|
|
|
def prepare_config_and_inputs(self):
|
|
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
|
|
|
|
labels = None
|
|
pixel_labels = None
|
|
if self.use_labels:
|
|
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, pixel_values, labels, pixel_labels
|
|
|
|
def get_config(self):
|
|
return Data2VecVisionConfig(
|
|
vocab_size=self.vocab_size,
|
|
image_size=self.image_size,
|
|
patch_size=self.patch_size,
|
|
num_channels=self.num_channels,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
is_decoder=False,
|
|
initializer_range=self.initializer_range,
|
|
out_indices=self.out_indices,
|
|
)
|
|
|
|
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
|
|
model = Data2VecVisionModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
|
|
num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
|
|
|
|
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
|
|
config.num_labels = self.type_sequence_label_size
|
|
model = Data2VecVisionForImageClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values, labels=labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
|
|
|
|
def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
|
|
config.num_labels = self.num_labels
|
|
model = Data2VecVisionForSemanticSegmentation(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(pixel_values)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
|
|
)
|
|
result = model(pixel_values, labels=pixel_labels)
|
|
self.parent.assertEqual(
|
|
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
|
|
)
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
config, pixel_values, labels, pixel_labels = config_and_inputs
|
|
inputs_dict = {"pixel_values": pixel_values}
|
|
return config, inputs_dict
|
|
|
|
|
|
@require_torch
|
|
class Data2VecVisionModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
"""
|
|
Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds,
|
|
attention_mask and seq_length.
|
|
"""
|
|
|
|
all_model_classes = (
|
|
(Data2VecVisionModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"image-feature-extraction": Data2VecVisionModel,
|
|
"image-classification": Data2VecVisionForImageClassification,
|
|
"image-segmentation": Data2VecVisionForSemanticSegmentation,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
test_pruning = False
|
|
test_resize_embeddings = False
|
|
test_head_masking = False
|
|
|
|
def setUp(self):
|
|
self.model_tester = Data2VecVisionModelTester(self)
|
|
self.config_tester = ConfigTester(
|
|
self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37
|
|
)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_inputs_embeds(self):
|
|
# Data2VecVision does not use inputs_embeds
|
|
pass
|
|
|
|
@require_torch_multi_gpu
|
|
@unittest.skip(
|
|
reason="Data2VecVision has some layers using `add_module` which doesn't work well with `nn.DataParallel`"
|
|
)
|
|
def test_multi_gpu_data_parallel_forward(self):
|
|
pass
|
|
|
|
def test_model_common_attributes(self):
|
|
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config)
|
|
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
|
|
x = model.get_output_embeddings()
|
|
self.assertTrue(x is None or isinstance(x, nn.Linear))
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_for_image_segmentation(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)
|
|
|
|
def test_training(self):
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ in MODEL_MAPPING_NAMES.values():
|
|
continue
|
|
|
|
model = model_class(config)
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_training_gradient_checkpointing(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
if not self.model_tester.is_training:
|
|
return
|
|
|
|
config.use_cache = False
|
|
config.return_dict = True
|
|
|
|
for model_class in self.all_model_classes:
|
|
if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
|
|
continue
|
|
# TODO: remove the following 3 lines once we have a MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
|
|
# this can then be incorporated into _prepare_for_class in test_modeling_common.py
|
|
elif model_class.__name__ == "Data2VecVisionForSemanticSegmentation":
|
|
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
|
|
inputs_dict["labels"] = torch.zeros(
|
|
[self.model_tester.batch_size, height, width], device=torch_device
|
|
).long()
|
|
model = model_class(config)
|
|
model.gradient_checkpointing_enable()
|
|
model.to(torch_device)
|
|
model.train()
|
|
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
|
|
loss = model(**inputs).loss
|
|
loss.backward()
|
|
|
|
def test_initialization(self):
|
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
|
|
|
|
configs_no_init = _config_zero_init(config)
|
|
for model_class in self.all_model_classes:
|
|
model = model_class(config=configs_no_init)
|
|
for name, param in model.named_parameters():
|
|
# we skip lambda parameters as these require special initial values
|
|
# determined by config.layer_scale_init_value
|
|
if "lambda" in name:
|
|
continue
|
|
if param.requires_grad:
|
|
self.assertIn(
|
|
((param.data.mean() * 1e9).round() / 1e9).item(),
|
|
[0.0, 1.0],
|
|
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
|
|
)
|
|
|
|
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None):
|
|
# We override with a slightly higher tol value, as semseg models tend to diverge a bit more
|
|
super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)
|
|
|
|
def test_for_image_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
|
|
|
|
@slow
|
|
def test_model_from_pretrained(self):
|
|
model_name = "facebook/data2vec-vision-base-ft1k"
|
|
model = Data2VecVisionModel.from_pretrained(model_name)
|
|
self.assertIsNotNone(model)
|
|
|
|
|
|
# We will verify our results on an image of cute cats
|
|
def prepare_img():
|
|
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
return image
|
|
|
|
|
|
@require_torch
|
|
@require_vision
|
|
class Data2VecVisionModelIntegrationTest(unittest.TestCase):
|
|
@cached_property
|
|
def default_image_processor(self):
|
|
return (
|
|
BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None
|
|
)
|
|
|
|
@slow
|
|
def test_inference_image_classification_head_imagenet_1k(self):
|
|
model = Data2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k").to(
|
|
torch_device
|
|
)
|
|
|
|
image_processor = self.default_image_processor
|
|
image = prepare_img()
|
|
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
|
|
|
|
# forward pass
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
logits = outputs.logits
|
|
|
|
# verify the logits
|
|
expected_shape = torch.Size((1, 1000))
|
|
self.assertEqual(logits.shape, expected_shape)
|
|
|
|
expected_slice = torch.tensor([0.3277, -0.1395, 0.0911]).to(torch_device)
|
|
|
|
self.assertTrue(torch.allclose(logits[0, :3], expected_slice, atol=1e-4))
|
|
|
|
expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]]
|
|
self.assertEqual(logits[0].topk(2).indices.cpu().tolist(), expected_top2)
|