transformers/examples/pytorch/text-generation/run_generation_contrastive_...

137 lines
5.0 KiB
Python
Executable File

#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 University of Cambridge, Tencent AI Lab, DeepMind and The University of Hong Kong Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The examples of running contrastive search on the auto-APIs;
Running this example:
python run_generation_contrastive_search.py --model_name_or_path=openai-community/gpt2-large --penalty_alpha=0.6 --k=4 --length=256
"""
import argparse
import logging
from accelerate import PartialState
from accelerate.utils import set_seed
from transformers import AutoModelForCausalLM, AutoTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
)
parser.add_argument("--prompt", type=str, default="")
parser.add_argument("--length", type=int, default=20)
parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped")
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="temperature of 1.0 has no effect, lower tend toward greedy sampling",
)
parser.add_argument(
"--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2"
)
parser.add_argument("--k", type=int, default=0)
parser.add_argument("--penalty_alpha", type=float, default=0.0)
parser.add_argument("--p", type=float, default=0.9)
parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.")
parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.")
parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.")
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
parser.add_argument(
"--use_cpu",
action="store_true",
help="Whether or not to use cpu. If set to False, " "we will use gpu/npu or mps device if available",
)
parser.add_argument(
"--fp16",
action="store_true",
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
)
args = parser.parse_args()
# Initialize the distributed state.
distributed_state = PartialState(cpu=args.use_cpu)
logger.warning(f"device: {distributed_state.device}, 16-bits inference: {args.fp16}")
if args.seed is not None:
set_seed(args.seed)
# Initialize the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path)
# tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path)
# model = OPTForCausalLM.from_pretrained(args.model_name_or_path)
# Set the model to the right device
model.to(distributed_state.device)
if args.fp16:
model.half()
logger.info(args)
prompt_text = args.prompt if args.prompt else input("Model prompt >>> ")
inputs = tokenizer(prompt_text, return_tensors="pt", add_special_tokens=False)
inputs = {key: value.to(distributed_state.device) for key, value in inputs.items()}
output_sequences = model.generate(
**inputs,
max_length=args.length + len(inputs["input_ids"][0]),
penalty_alpha=args.penalty_alpha,
top_k=args.k,
)
generated_sequences = []
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
generated_sequence = generated_sequence.tolist()
# Decode text
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, add_special_tokens=False)
# Remove all text after the stop token
text = text[: text.find(args.stop_token) if args.stop_token else None]
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
total_sequence = (
prompt_text + text[len(tokenizer.decode(inputs["input_ids"][0], clean_up_tokenization_spaces=True)) :]
)
generated_sequences.append(total_sequence)
print(total_sequence)
return generated_sequences
if __name__ == "__main__":
main()