821 lines
33 KiB
Python
Executable File
821 lines
33 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
|
|
|
import functools
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
import sys
|
|
import warnings
|
|
from dataclasses import dataclass, field
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import datasets
|
|
import evaluate
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoFeatureExtractor,
|
|
AutoModelForCTC,
|
|
AutoProcessor,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
Wav2Vec2Processor,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.42.0.dev0")
|
|
|
|
require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt")
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def list_field(default=None, metadata=None):
|
|
return field(default_factory=lambda: default, metadata=metadata)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
|
)
|
|
tokenizer_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
freeze_feature_encoder: bool = field(
|
|
default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
|
|
)
|
|
attention_dropout: float = field(
|
|
default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
|
|
)
|
|
activation_dropout: float = field(
|
|
default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
|
|
)
|
|
feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
|
|
hidden_dropout: float = field(
|
|
default=0.0,
|
|
metadata={
|
|
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
|
},
|
|
)
|
|
final_dropout: float = field(
|
|
default=0.0,
|
|
metadata={"help": "The dropout probability for the final projection layer."},
|
|
)
|
|
mask_time_prob: float = field(
|
|
default=0.05,
|
|
metadata={
|
|
"help": (
|
|
"Probability of each feature vector along the time axis to be chosen as the start of the vector "
|
|
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
|
|
"vectors will be masked along the time axis."
|
|
)
|
|
},
|
|
)
|
|
mask_time_length: int = field(
|
|
default=10,
|
|
metadata={"help": "Length of vector span to mask along the time axis."},
|
|
)
|
|
mask_feature_prob: float = field(
|
|
default=0.0,
|
|
metadata={
|
|
"help": (
|
|
"Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
|
|
" to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
|
|
" bins will be masked along the time axis."
|
|
)
|
|
},
|
|
)
|
|
mask_feature_length: int = field(
|
|
default=10,
|
|
metadata={"help": "Length of vector span to mask along the feature axis."},
|
|
)
|
|
layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
|
|
ctc_loss_reduction: Optional[str] = field(
|
|
default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
|
|
)
|
|
ctc_zero_infinity: Optional[bool] = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly"
|
|
" occur when the inputs are too short to be aligned to the targets."
|
|
},
|
|
)
|
|
add_adapter: Optional[bool] = field(
|
|
default=False,
|
|
metadata={
|
|
"help": "Whether a convolutional attention network should be stacked on top of the Wav2Vec2Bert Encoder. Can be very"
|
|
"useful to downsample the output length."
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
|
|
Using `HfArgumentParser` we can turn this class
|
|
into argparse arguments to be able to specify them on
|
|
the command line.
|
|
"""
|
|
|
|
dataset_name: str = field(
|
|
metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: str = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_split_name: str = field(
|
|
default="train+validation",
|
|
metadata={
|
|
"help": (
|
|
"The name of the training data set split to use (via the datasets library). Defaults to "
|
|
"'train+validation'"
|
|
)
|
|
},
|
|
)
|
|
eval_split_name: str = field(
|
|
default="test",
|
|
metadata={
|
|
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'test'"
|
|
},
|
|
)
|
|
audio_column_name: str = field(
|
|
default="audio",
|
|
metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
|
|
)
|
|
text_column_name: str = field(
|
|
default="text",
|
|
metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of validation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
chars_to_ignore: Optional[List[str]] = list_field(
|
|
default=None,
|
|
metadata={"help": "A list of characters to remove from the transcripts."},
|
|
)
|
|
eval_metrics: List[str] = list_field(
|
|
default=["wer"],
|
|
metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
|
|
)
|
|
max_duration_in_seconds: float = field(
|
|
default=20.0,
|
|
metadata={
|
|
"help": (
|
|
"Filter audio files that are longer than `max_duration_in_seconds` seconds to"
|
|
" 'max_duration_in_seconds`"
|
|
)
|
|
},
|
|
)
|
|
min_duration_in_seconds: float = field(
|
|
default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
|
|
)
|
|
preprocessing_only: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether to only do data preprocessing and skip training. This is especially useful when data"
|
|
" preprocessing errors out in distributed training due to timeout. In this case, one should run the"
|
|
" preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets"
|
|
" can consequently be loaded in distributed training"
|
|
)
|
|
},
|
|
)
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
unk_token: str = field(
|
|
default="[UNK]",
|
|
metadata={"help": "The unk token for the tokenizer"},
|
|
)
|
|
pad_token: str = field(
|
|
default="[PAD]",
|
|
metadata={"help": "The padding token for the tokenizer"},
|
|
)
|
|
word_delimiter_token: str = field(
|
|
default="|",
|
|
metadata={"help": "The word delimiter token for the tokenizer"},
|
|
)
|
|
phoneme_language: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The target language that should be used be"
|
|
" passed to the tokenizer for tokenization. Note that"
|
|
" this is only relevant if the model classifies the"
|
|
" input audio to a sequence of phoneme sequences."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorCTCWithPadding:
|
|
"""
|
|
Data collator that will dynamically pad the inputs received.
|
|
Args:
|
|
processor (:class:`~transformers.AutoProcessor`)
|
|
The processor used for proccessing the data.
|
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
|
among:
|
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
|
sequence if provided).
|
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
|
maximum acceptable input length for the model if that argument is not provided.
|
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
|
different lengths).
|
|
max_length (:obj:`int`, `optional`):
|
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
|
max_length_labels (:obj:`int`, `optional`):
|
|
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
|
pad_to_multiple_of (:obj:`int`, `optional`):
|
|
If set will pad the sequence to a multiple of the provided value.
|
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
|
7.5 (Volta).
|
|
"""
|
|
|
|
processor: AutoProcessor
|
|
padding: Union[bool, str] = "longest"
|
|
pad_to_multiple_of: Optional[int] = None
|
|
pad_to_multiple_of_labels: Optional[int] = None
|
|
feature_extractor_input_name: Optional[str] = "input_values"
|
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
|
# split inputs and labels since they have to be of different lengths and need
|
|
# different padding methods
|
|
input_features = [
|
|
{self.feature_extractor_input_name: feature[self.feature_extractor_input_name]} for feature in features
|
|
]
|
|
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
|
|
|
batch = self.processor.pad(
|
|
input_features,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
labels_batch = self.processor.pad(
|
|
labels=label_features,
|
|
padding=self.padding,
|
|
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
# replace padding with -100 to ignore loss correctly
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
|
|
|
|
batch["labels"] = labels
|
|
if "attention_mask" in batch:
|
|
batch["attention_mask"] = batch["attention_mask"].to(torch.long)
|
|
|
|
return batch
|
|
|
|
|
|
def create_vocabulary_from_data(
|
|
datasets: DatasetDict,
|
|
word_delimiter_token: Optional[str] = None,
|
|
unk_token: Optional[str] = None,
|
|
pad_token: Optional[str] = None,
|
|
):
|
|
# Given training and test labels create vocabulary
|
|
def extract_all_chars(batch):
|
|
all_text = " ".join(batch["target_text"])
|
|
vocab = list(set(all_text))
|
|
return {"vocab": [vocab], "all_text": [all_text]}
|
|
|
|
vocabs = datasets.map(
|
|
extract_all_chars,
|
|
batched=True,
|
|
batch_size=-1,
|
|
keep_in_memory=True,
|
|
remove_columns=datasets["train"].column_names,
|
|
)
|
|
|
|
# take union of all unique characters in each dataset
|
|
vocab_set = functools.reduce(
|
|
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
|
|
)
|
|
|
|
vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))}
|
|
|
|
# replace white space with delimiter token
|
|
if word_delimiter_token is not None:
|
|
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
|
del vocab_dict[" "]
|
|
|
|
# add unk and pad token
|
|
if unk_token is not None:
|
|
vocab_dict[unk_token] = len(vocab_dict)
|
|
|
|
if pad_token is not None:
|
|
vocab_dict[pad_token] = len(vocab_dict)
|
|
|
|
return vocab_dict
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_speech_recognition_ctc", model_args, data_args)
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# 1. First, let's load the dataset
|
|
raw_datasets = DatasetDict()
|
|
|
|
if training_args.do_train:
|
|
raw_datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.train_split_name,
|
|
token=data_args.token,
|
|
)
|
|
|
|
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'."
|
|
" Make sure to set `--audio_column_name` to the correct audio column - one of"
|
|
f" {', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
|
raise ValueError(
|
|
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
|
"Make sure to set `--text_column_name` to the correct text column - one of "
|
|
f"{', '.join(raw_datasets['train'].column_names)}."
|
|
)
|
|
|
|
if data_args.max_train_samples is not None:
|
|
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
|
|
|
|
if training_args.do_eval:
|
|
raw_datasets["eval"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=data_args.eval_split_name,
|
|
token=data_args.token,
|
|
)
|
|
|
|
if data_args.max_eval_samples is not None:
|
|
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
|
|
|
|
# 2. We remove some special characters from the datasets
|
|
# that make training complicated and do not help in transcribing the speech
|
|
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
|
# that could be easily picked up by the model
|
|
chars_to_ignore_regex = (
|
|
f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
|
|
)
|
|
text_column_name = data_args.text_column_name
|
|
|
|
def remove_special_characters(batch):
|
|
if chars_to_ignore_regex is not None:
|
|
batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
|
else:
|
|
batch["target_text"] = batch[text_column_name].lower() + " "
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map special characters removal"):
|
|
raw_datasets = raw_datasets.map(
|
|
remove_special_characters,
|
|
remove_columns=[text_column_name],
|
|
desc="remove special characters from datasets",
|
|
)
|
|
|
|
# save special tokens for tokenizer
|
|
word_delimiter_token = data_args.word_delimiter_token
|
|
unk_token = data_args.unk_token
|
|
pad_token = data_args.pad_token
|
|
|
|
# 3. Next, let's load the config as we might need it to create
|
|
# the tokenizer
|
|
# load config
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
token=data_args.token,
|
|
trust_remote_code=data_args.trust_remote_code,
|
|
)
|
|
|
|
# 4. Next, if no tokenizer file is defined,
|
|
# we create the vocabulary of the model by extracting all unique characters from
|
|
# the training and evaluation datasets
|
|
# We need to make sure that only first rank saves vocabulary
|
|
# make sure all processes wait until vocab is created
|
|
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
|
tokenizer_kwargs = {}
|
|
if tokenizer_name_or_path is None:
|
|
# save vocab in training output dir
|
|
tokenizer_name_or_path = training_args.output_dir
|
|
|
|
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
|
|
|
with training_args.main_process_first():
|
|
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
|
try:
|
|
os.remove(vocab_file)
|
|
except OSError:
|
|
# in shared file-systems it might be the case that
|
|
# two processes try to delete the vocab file at the some time
|
|
pass
|
|
|
|
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
|
if not os.path.isfile(vocab_file):
|
|
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
|
vocab_dict = create_vocabulary_from_data(
|
|
raw_datasets,
|
|
word_delimiter_token=word_delimiter_token,
|
|
unk_token=unk_token,
|
|
pad_token=pad_token,
|
|
)
|
|
|
|
# save vocab dict to be loaded into tokenizer
|
|
with open(vocab_file, "w") as file:
|
|
json.dump(vocab_dict, file)
|
|
|
|
# if tokenizer has just been created
|
|
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
|
tokenizer_kwargs = {
|
|
"config": config if config.tokenizer_class is not None else None,
|
|
"tokenizer_type": config.model_type if config.tokenizer_class is None else None,
|
|
"unk_token": unk_token,
|
|
"pad_token": pad_token,
|
|
"word_delimiter_token": word_delimiter_token,
|
|
}
|
|
|
|
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
|
# Note for distributed training, the .from_pretrained methods guarantee that only
|
|
# one local process can concurrently download model & vocab.
|
|
|
|
# load feature_extractor and tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_name_or_path,
|
|
token=data_args.token,
|
|
trust_remote_code=data_args.trust_remote_code,
|
|
**tokenizer_kwargs,
|
|
)
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
token=data_args.token,
|
|
trust_remote_code=data_args.trust_remote_code,
|
|
)
|
|
|
|
# adapt config
|
|
config.update(
|
|
{
|
|
"feat_proj_dropout": model_args.feat_proj_dropout,
|
|
"attention_dropout": model_args.attention_dropout,
|
|
"hidden_dropout": model_args.hidden_dropout,
|
|
"final_dropout": model_args.final_dropout,
|
|
"mask_time_prob": model_args.mask_time_prob,
|
|
"mask_time_length": model_args.mask_time_length,
|
|
"mask_feature_prob": model_args.mask_feature_prob,
|
|
"mask_feature_length": model_args.mask_feature_length,
|
|
"gradient_checkpointing": training_args.gradient_checkpointing,
|
|
"layerdrop": model_args.layerdrop,
|
|
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
|
"ctc_zero_infinity": model_args.ctc_zero_infinity,
|
|
"pad_token_id": tokenizer.pad_token_id,
|
|
"vocab_size": len(tokenizer),
|
|
"activation_dropout": model_args.activation_dropout,
|
|
"add_adapter": model_args.add_adapter,
|
|
}
|
|
)
|
|
|
|
# create model
|
|
model = AutoModelForCTC.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
config=config,
|
|
token=data_args.token,
|
|
trust_remote_code=data_args.trust_remote_code,
|
|
)
|
|
|
|
# freeze encoder
|
|
if model_args.freeze_feature_encoder:
|
|
model.freeze_feature_encoder()
|
|
|
|
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
|
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
|
# so that we just need to set the correct target sampling rate and normalize the input
|
|
# via the `feature_extractor`
|
|
|
|
# make sure that dataset decodes audio with correct sampling rate
|
|
dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
|
|
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
|
raw_datasets = raw_datasets.cast_column(
|
|
data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
|
|
)
|
|
|
|
# derive max & min input length for sample rate & max duration
|
|
max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
|
min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
|
audio_column_name = data_args.audio_column_name
|
|
num_workers = data_args.preprocessing_num_workers
|
|
feature_extractor_input_name = feature_extractor.model_input_names[0]
|
|
|
|
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
|
phoneme_language = data_args.phoneme_language
|
|
|
|
# Preprocessing the datasets.
|
|
# We need to read the audio files as arrays and tokenize the targets.
|
|
def prepare_dataset(batch):
|
|
# load audio
|
|
sample = batch[audio_column_name]
|
|
|
|
inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
|
|
batch[feature_extractor_input_name] = getattr(inputs, feature_extractor_input_name)[0]
|
|
# take length of raw audio waveform
|
|
batch["input_length"] = len(sample["array"].squeeze())
|
|
|
|
# encode targets
|
|
additional_kwargs = {}
|
|
if phoneme_language is not None:
|
|
additional_kwargs["phonemizer_lang"] = phoneme_language
|
|
|
|
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
|
return batch
|
|
|
|
with training_args.main_process_first(desc="dataset map preprocessing"):
|
|
vectorized_datasets = raw_datasets.map(
|
|
prepare_dataset,
|
|
remove_columns=next(iter(raw_datasets.values())).column_names,
|
|
num_proc=num_workers,
|
|
desc="preprocess datasets",
|
|
)
|
|
|
|
def is_audio_in_length_range(length):
|
|
return length > min_input_length and length < max_input_length
|
|
|
|
# filter data that is shorter than min_input_length
|
|
vectorized_datasets = vectorized_datasets.filter(
|
|
is_audio_in_length_range,
|
|
num_proc=num_workers,
|
|
input_columns=["input_length"],
|
|
)
|
|
|
|
# 7. Next, we can prepare the training.
|
|
# Let's use word error rate (WER) as our evaluation metric,
|
|
# instantiate a data collator and the trainer
|
|
|
|
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
|
eval_metrics = {metric: evaluate.load(metric, cache_dir=model_args.cache_dir) for metric in data_args.eval_metrics}
|
|
|
|
# for large datasets it is advised to run the preprocessing on a
|
|
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
|
# be a timeout when running the script in distributed mode.
|
|
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
|
# cached dataset
|
|
if data_args.preprocessing_only:
|
|
logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
|
|
return
|
|
|
|
# For languages like Chinese with large vocabulary size, we need to discard logits
|
|
# and only keep the argmax, otherwise we run out of memory during evaluation.
|
|
def preprocess_logits_for_metrics(logits, labels):
|
|
pred_ids = torch.argmax(logits, dim=-1)
|
|
return pred_ids, labels
|
|
|
|
def compute_metrics(pred):
|
|
pred_ids = pred.predictions[0]
|
|
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
|
|
|
pred_str = tokenizer.batch_decode(pred_ids)
|
|
# we do not want to group tokens when computing the metrics
|
|
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
|
|
|
metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
|
|
|
|
return metrics
|
|
|
|
# Now save everything to be able to create a single processor later
|
|
# make sure all processes wait until data is saved
|
|
with training_args.main_process_first():
|
|
# only the main process saves them
|
|
if is_main_process(training_args.local_rank):
|
|
# save feature extractor, tokenizer and config
|
|
feature_extractor.save_pretrained(training_args.output_dir)
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
config.save_pretrained(training_args.output_dir)
|
|
|
|
try:
|
|
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
|
except (OSError, KeyError):
|
|
warnings.warn(
|
|
"Loading a processor from a feature extractor config that does not"
|
|
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
|
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
|
" `'processor_class': 'Wav2Vec2Processor'`",
|
|
FutureWarning,
|
|
)
|
|
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
|
|
|
# Instantiate custom data collator
|
|
data_collator = DataCollatorCTCWithPadding(
|
|
processor=processor, feature_extractor_input_name=feature_extractor_input_name
|
|
)
|
|
|
|
# Initialize Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
data_collator=data_collator,
|
|
args=training_args,
|
|
compute_metrics=compute_metrics,
|
|
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
|
tokenizer=processor,
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
|
)
|
|
|
|
# 8. Finally, we can start training
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
# use last checkpoint if exist
|
|
if last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
elif os.path.isdir(model_args.model_name_or_path):
|
|
checkpoint = model_args.model_name_or_path
|
|
else:
|
|
checkpoint = None
|
|
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
|
|
metrics = train_result.metrics
|
|
max_train_samples = (
|
|
data_args.max_train_samples
|
|
if data_args.max_train_samples is not None
|
|
else len(vectorized_datasets["train"])
|
|
)
|
|
metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
|
|
|
|
trainer.log_metrics("train", metrics)
|
|
trainer.save_metrics("train", metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
metrics = trainer.evaluate()
|
|
max_eval_samples = (
|
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
|
|
)
|
|
metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
|
|
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tasks": "automatic-speech-recognition",
|
|
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
|
"dataset_args": (
|
|
f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:"
|
|
f" {data_args.eval_split_name}"
|
|
),
|
|
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
|
}
|
|
if "common_voice" in data_args.dataset_name:
|
|
kwargs["language"] = config_name
|
|
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|