432 lines
17 KiB
Python
432 lines
17 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from functools import partial
|
|
from typing import Optional
|
|
|
|
import albumentations as A
|
|
import evaluate
|
|
import numpy as np
|
|
import torch
|
|
from albumentations.pytorch import ToTensorV2
|
|
from datasets import load_dataset
|
|
from huggingface_hub import hf_hub_download
|
|
from torch import nn
|
|
|
|
import transformers
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoImageProcessor,
|
|
AutoModelForSemanticSegmentation,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
default_data_collator,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint
|
|
from transformers.utils import check_min_version, send_example_telemetry
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
""" Finetuning any 🤗 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
|
check_min_version("4.42.0.dev0")
|
|
|
|
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
|
|
|
|
|
|
def reduce_labels_transform(labels: np.ndarray, **kwargs) -> np.ndarray:
|
|
"""Set `0` label as with value 255 and then reduce all other labels by 1.
|
|
|
|
Example:
|
|
Initial class labels: 0 - background; 1 - road; 2 - car;
|
|
Transformed class labels: 255 - background; 0 - road; 1 - car;
|
|
|
|
**kwargs are required to use this function with albumentations.
|
|
"""
|
|
labels[labels == 0] = 255
|
|
labels = labels - 1
|
|
labels[labels == 254] = 255
|
|
return labels
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
|
|
them on the command line.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default="segments/sidewalk-semantic",
|
|
metadata={
|
|
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
|
|
},
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_val_split: Optional[float] = field(
|
|
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
|
)
|
|
max_train_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
max_eval_samples: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
|
"value if set."
|
|
)
|
|
},
|
|
)
|
|
reduce_labels: Optional[bool] = field(
|
|
default=False,
|
|
metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
|
|
raise ValueError(
|
|
"You must specify either a dataset name from the hub or a train and/or validation directory."
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
|
"""
|
|
|
|
model_name_or_path: str = field(
|
|
default="nvidia/mit-b0",
|
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
|
token: str = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
|
)
|
|
},
|
|
)
|
|
trust_remote_code: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
|
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
|
|
"execute code present on the Hub on your local machine."
|
|
)
|
|
},
|
|
)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
|
send_example_telemetry("run_semantic_segmentation", model_args, data_args)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
|
|
if training_args.should_log:
|
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
|
transformers.utils.logging.set_verbosity_info()
|
|
|
|
log_level = training_args.get_process_log_level()
|
|
logger.setLevel(log_level)
|
|
transformers.utils.logging.set_verbosity(log_level)
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
|
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Load dataset
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
# TODO support datasets from local folders
|
|
dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir)
|
|
|
|
# Rename column names to standardized names (only "image" and "label" need to be present)
|
|
if "pixel_values" in dataset["train"].column_names:
|
|
dataset = dataset.rename_columns({"pixel_values": "image"})
|
|
if "annotation" in dataset["train"].column_names:
|
|
dataset = dataset.rename_columns({"annotation": "label"})
|
|
|
|
# If we don't have a validation split, split off a percentage of train as validation.
|
|
data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
|
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
|
split = dataset["train"].train_test_split(data_args.train_val_split)
|
|
dataset["train"] = split["train"]
|
|
dataset["validation"] = split["test"]
|
|
|
|
# Prepare label mappings.
|
|
# We'll include these in the model's config to get human readable labels in the Inference API.
|
|
if data_args.dataset_name == "scene_parse_150":
|
|
repo_id = "huggingface/label-files"
|
|
filename = "ade20k-id2label.json"
|
|
else:
|
|
repo_id = data_args.dataset_name
|
|
filename = "id2label.json"
|
|
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
|
id2label = {int(k): v for k, v in id2label.items()}
|
|
label2id = {v: str(k) for k, v in id2label.items()}
|
|
|
|
# Load the mean IoU metric from the evaluate package
|
|
metric = evaluate.load("mean_iou", cache_dir=model_args.cache_dir)
|
|
|
|
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
|
# predictions and label_ids field) and has to return a dictionary string to float.
|
|
@torch.no_grad()
|
|
def compute_metrics(eval_pred):
|
|
logits, labels = eval_pred
|
|
logits_tensor = torch.from_numpy(logits)
|
|
# scale the logits to the size of the label
|
|
logits_tensor = nn.functional.interpolate(
|
|
logits_tensor,
|
|
size=labels.shape[-2:],
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
).argmax(dim=1)
|
|
|
|
pred_labels = logits_tensor.detach().cpu().numpy()
|
|
metrics = metric.compute(
|
|
predictions=pred_labels,
|
|
references=labels,
|
|
num_labels=len(id2label),
|
|
ignore_index=0,
|
|
reduce_labels=image_processor.do_reduce_labels,
|
|
)
|
|
# add per category metrics as individual key-value pairs
|
|
per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
|
|
per_category_iou = metrics.pop("per_category_iou").tolist()
|
|
|
|
metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
|
|
metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
|
|
|
|
return metrics
|
|
|
|
config = AutoConfig.from_pretrained(
|
|
model_args.config_name or model_args.model_name_or_path,
|
|
label2id=label2id,
|
|
id2label=id2label,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
model = AutoModelForSemanticSegmentation.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
image_processor = AutoImageProcessor.from_pretrained(
|
|
model_args.image_processor_name or model_args.model_name_or_path,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=model_args.token,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
# `reduce_labels` is a property of dataset labels, in case we use image_processor
|
|
# pretrained on another dataset we should override the default setting
|
|
image_processor.do_reduce_labels = data_args.reduce_labels
|
|
|
|
# Define transforms to be applied to each image and target.
|
|
if "shortest_edge" in image_processor.size:
|
|
# We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
|
|
height, width = image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]
|
|
else:
|
|
height, width = image_processor.size["height"], image_processor.size["width"]
|
|
train_transforms = A.Compose(
|
|
[
|
|
A.Lambda(
|
|
name="reduce_labels",
|
|
mask=reduce_labels_transform if data_args.reduce_labels else None,
|
|
p=1.0,
|
|
),
|
|
# pad image with 255, because it is ignored by loss
|
|
A.PadIfNeeded(min_height=height, min_width=width, border_mode=0, value=255, p=1.0),
|
|
A.RandomCrop(height=height, width=width, p=1.0),
|
|
A.HorizontalFlip(p=0.5),
|
|
A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
|
|
ToTensorV2(),
|
|
]
|
|
)
|
|
val_transforms = A.Compose(
|
|
[
|
|
A.Lambda(
|
|
name="reduce_labels",
|
|
mask=reduce_labels_transform if data_args.reduce_labels else None,
|
|
p=1.0,
|
|
),
|
|
A.Resize(height=height, width=width, p=1.0),
|
|
A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
|
|
ToTensorV2(),
|
|
]
|
|
)
|
|
|
|
def preprocess_batch(example_batch, transforms: A.Compose):
|
|
pixel_values = []
|
|
labels = []
|
|
for image, target in zip(example_batch["image"], example_batch["label"]):
|
|
transformed = transforms(image=np.array(image.convert("RGB")), mask=np.array(target))
|
|
pixel_values.append(transformed["image"])
|
|
labels.append(transformed["mask"])
|
|
|
|
encoding = {}
|
|
encoding["pixel_values"] = torch.stack(pixel_values).to(torch.float)
|
|
encoding["labels"] = torch.stack(labels).to(torch.long)
|
|
|
|
return encoding
|
|
|
|
# Preprocess function for dataset should have only one argument,
|
|
# so we use partial to pass the transforms
|
|
preprocess_train_batch_fn = partial(preprocess_batch, transforms=train_transforms)
|
|
preprocess_val_batch_fn = partial(preprocess_batch, transforms=val_transforms)
|
|
|
|
if training_args.do_train:
|
|
if "train" not in dataset:
|
|
raise ValueError("--do_train requires a train dataset")
|
|
if data_args.max_train_samples is not None:
|
|
dataset["train"] = (
|
|
dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
|
)
|
|
# Set the training transforms
|
|
dataset["train"].set_transform(preprocess_train_batch_fn)
|
|
|
|
if training_args.do_eval:
|
|
if "validation" not in dataset:
|
|
raise ValueError("--do_eval requires a validation dataset")
|
|
if data_args.max_eval_samples is not None:
|
|
dataset["validation"] = (
|
|
dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
|
)
|
|
# Set the validation transforms
|
|
dataset["validation"].set_transform(preprocess_val_batch_fn)
|
|
|
|
# Initialize our trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=dataset["train"] if training_args.do_train else None,
|
|
eval_dataset=dataset["validation"] if training_args.do_eval else None,
|
|
compute_metrics=compute_metrics,
|
|
tokenizer=image_processor,
|
|
data_collator=default_data_collator,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
checkpoint = None
|
|
if training_args.resume_from_checkpoint is not None:
|
|
checkpoint = training_args.resume_from_checkpoint
|
|
elif last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model()
|
|
trainer.log_metrics("train", train_result.metrics)
|
|
trainer.save_metrics("train", train_result.metrics)
|
|
trainer.save_state()
|
|
|
|
# Evaluation
|
|
if training_args.do_eval:
|
|
metrics = trainer.evaluate()
|
|
trainer.log_metrics("eval", metrics)
|
|
trainer.save_metrics("eval", metrics)
|
|
|
|
# Write model card and (optionally) push to hub
|
|
kwargs = {
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"dataset": data_args.dataset_name,
|
|
"tags": ["image-segmentation", "vision"],
|
|
}
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(**kwargs)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|