149 lines
6.0 KiB
Markdown
149 lines
6.0 KiB
Markdown
<!---
|
|
Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
-->
|
|
|
|
# Audio classification examples
|
|
|
|
The following examples showcase how to fine-tune `Wav2Vec2` for audio classification using PyTorch.
|
|
|
|
Speech recognition models that have been pretrained in unsupervised fashion on audio data alone,
|
|
*e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html),
|
|
[HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html),
|
|
[XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), have shown to require only
|
|
very little annotated data to yield good performance on speech classification datasets.
|
|
|
|
## Single-GPU
|
|
|
|
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the 🗣️ [Keyword Spotting subset](https://huggingface.co/datasets/superb#ks) of the SUPERB dataset.
|
|
|
|
```bash
|
|
python run_audio_classification.py \
|
|
--model_name_or_path facebook/wav2vec2-base \
|
|
--dataset_name superb \
|
|
--dataset_config_name ks \
|
|
--output_dir wav2vec2-base-ft-keyword-spotting \
|
|
--overwrite_output_dir \
|
|
--remove_unused_columns False \
|
|
--do_train \
|
|
--do_eval \
|
|
--fp16 \
|
|
--learning_rate 3e-5 \
|
|
--max_length_seconds 1 \
|
|
--attention_mask False \
|
|
--warmup_ratio 0.1 \
|
|
--num_train_epochs 5 \
|
|
--per_device_train_batch_size 32 \
|
|
--gradient_accumulation_steps 4 \
|
|
--per_device_eval_batch_size 32 \
|
|
--dataloader_num_workers 4 \
|
|
--logging_strategy steps \
|
|
--logging_steps 10 \
|
|
--eval_strategy epoch \
|
|
--save_strategy epoch \
|
|
--load_best_model_at_end True \
|
|
--metric_for_best_model accuracy \
|
|
--save_total_limit 3 \
|
|
--seed 0 \
|
|
--push_to_hub
|
|
```
|
|
|
|
On a single V100 GPU (16GB), this script should run in ~14 minutes and yield accuracy of **98.26%**.
|
|
|
|
👀 See the results here: [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting)
|
|
|
|
> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it.
|
|
|
|
## Multi-GPU
|
|
|
|
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) for 🌎 **Language Identification** on the [CommonLanguage dataset](https://huggingface.co/datasets/anton-l/common_language).
|
|
|
|
```bash
|
|
python run_audio_classification.py \
|
|
--model_name_or_path facebook/wav2vec2-base \
|
|
--dataset_name common_language \
|
|
--audio_column_name audio \
|
|
--label_column_name language \
|
|
--output_dir wav2vec2-base-lang-id \
|
|
--overwrite_output_dir \
|
|
--remove_unused_columns False \
|
|
--do_train \
|
|
--do_eval \
|
|
--fp16 \
|
|
--learning_rate 3e-4 \
|
|
--max_length_seconds 16 \
|
|
--attention_mask False \
|
|
--warmup_ratio 0.1 \
|
|
--num_train_epochs 10 \
|
|
--per_device_train_batch_size 8 \
|
|
--gradient_accumulation_steps 4 \
|
|
--per_device_eval_batch_size 1 \
|
|
--dataloader_num_workers 8 \
|
|
--logging_strategy steps \
|
|
--logging_steps 10 \
|
|
--eval_strategy epoch \
|
|
--save_strategy epoch \
|
|
--load_best_model_at_end True \
|
|
--metric_for_best_model accuracy \
|
|
--save_total_limit 3 \
|
|
--seed 0 \
|
|
--push_to_hub
|
|
```
|
|
|
|
On 4 V100 GPUs (16GB), this script should run in ~1 hour and yield accuracy of **79.45%**.
|
|
|
|
👀 See the results here: [anton-l/wav2vec2-base-lang-id](https://huggingface.co/anton-l/wav2vec2-base-lang-id)
|
|
|
|
## Sharing your model on 🤗 Hub
|
|
|
|
0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account
|
|
|
|
1. Make sure you have `git-lfs` installed and git set up.
|
|
|
|
```bash
|
|
$ apt install git-lfs
|
|
```
|
|
|
|
2. Log in with your HuggingFace account credentials using `huggingface-cli`
|
|
|
|
```bash
|
|
$ huggingface-cli login
|
|
# ...follow the prompts
|
|
```
|
|
|
|
3. When running the script, pass the following arguments:
|
|
|
|
```bash
|
|
python run_audio_classification.py \
|
|
--push_to_hub \
|
|
--hub_model_id <username/model_id> \
|
|
...
|
|
```
|
|
|
|
### Examples
|
|
|
|
The following table shows a couple of demonstration fine-tuning runs.
|
|
It has been verified that the script works for the following datasets:
|
|
|
|
- [SUPERB Keyword Spotting](https://huggingface.co/datasets/superb#ks)
|
|
- [Common Language](https://huggingface.co/datasets/common_language)
|
|
|
|
| Dataset | Pretrained Model | # transformer layers | Accuracy on eval | GPU setup | Training time | Fine-tuned Model & Logs |
|
|
|---------|------------------|----------------------|------------------|-----------|---------------|--------------------------|
|
|
| Keyword Spotting | [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) | 2 | 0.9706 | 1 V100 GPU | 11min | [here](https://huggingface.co/anton-l/distilhubert-ft-keyword-spotting) |
|
|
| Keyword Spotting | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.9826 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) |
|
|
| Keyword Spotting | [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) | 12 | 0.9819 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/hubert-base-ft-keyword-spotting) |
|
|
| Keyword Spotting | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 24 | 0.9757 | 1 V100 GPU | 15min | [here](https://huggingface.co/anton-l/sew-mid-100k-ft-keyword-spotting) |
|
|
| Common Language | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.7945 | 4 V100 GPUs | 1h10m | [here](https://huggingface.co/anton-l/wav2vec2-base-lang-id) |
|