200 lines
7.1 KiB
Python
200 lines
7.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""A script running `create_dummy_models.py` with a pre-defined set of arguments.
|
|
|
|
This file is intended to be used in a CI workflow file without the need of specifying arguments. It creates and uploads
|
|
tiny models for all model classes (if their tiny versions are not on the Hub yet), as well as produces an updated
|
|
version of `tests/utils/tiny_model_summary.json`. That updated file should be merged into the `main` branch of
|
|
`transformers` so the pipeline testing will use the latest created/updated tiny models.
|
|
"""
|
|
|
|
import argparse
|
|
import copy
|
|
import json
|
|
import multiprocessing
|
|
import os
|
|
import time
|
|
|
|
from create_dummy_models import COMPOSITE_MODELS, create_tiny_models
|
|
from huggingface_hub import ModelFilter, hf_api
|
|
|
|
import transformers
|
|
from transformers import AutoFeatureExtractor, AutoImageProcessor, AutoTokenizer
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
|
|
def get_all_model_names():
|
|
model_names = set()
|
|
# Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
|
|
for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
|
|
module = getattr(transformers.models.auto, module_name, None)
|
|
if module is None:
|
|
continue
|
|
# all mappings in a single auto modeling file
|
|
mapping_names = [
|
|
x
|
|
for x in dir(module)
|
|
if x.endswith("_MAPPING_NAMES")
|
|
and (x.startswith("MODEL_") or x.startswith("TF_MODEL_") or x.startswith("FLAX_MODEL_"))
|
|
]
|
|
for name in mapping_names:
|
|
mapping = getattr(module, name)
|
|
if mapping is not None:
|
|
for v in mapping.values():
|
|
if isinstance(v, (list, tuple)):
|
|
model_names.update(v)
|
|
elif isinstance(v, str):
|
|
model_names.add(v)
|
|
|
|
return sorted(model_names)
|
|
|
|
|
|
def get_tiny_model_names_from_repo():
|
|
# All model names defined in auto mappings
|
|
model_names = set(get_all_model_names())
|
|
|
|
with open("tests/utils/tiny_model_summary.json") as fp:
|
|
tiny_model_info = json.load(fp)
|
|
tiny_models_names = set()
|
|
for model_base_name in tiny_model_info:
|
|
tiny_models_names.update(tiny_model_info[model_base_name]["model_classes"])
|
|
|
|
# Remove a tiny model name if one of its framework implementation hasn't yet a tiny version on the Hub.
|
|
not_on_hub = model_names.difference(tiny_models_names)
|
|
for model_name in copy.copy(tiny_models_names):
|
|
if not model_name.startswith("TF") and f"TF{model_name}" in not_on_hub:
|
|
tiny_models_names.remove(model_name)
|
|
elif model_name.startswith("TF") and model_name[2:] in not_on_hub:
|
|
tiny_models_names.remove(model_name)
|
|
|
|
return sorted(tiny_models_names)
|
|
|
|
|
|
def get_tiny_model_summary_from_hub(output_path):
|
|
special_models = COMPOSITE_MODELS.values()
|
|
|
|
# All tiny model base names on Hub
|
|
model_names = get_all_model_names()
|
|
models = hf_api.list_models(
|
|
filter=ModelFilter(
|
|
author="hf-internal-testing",
|
|
)
|
|
)
|
|
_models = set()
|
|
for x in models:
|
|
model = x.modelId
|
|
org, model = model.split("/")
|
|
if not model.startswith("tiny-random-"):
|
|
continue
|
|
model = model.replace("tiny-random-", "")
|
|
if not model[0].isupper():
|
|
continue
|
|
if model not in model_names and model not in special_models:
|
|
continue
|
|
_models.add(model)
|
|
|
|
models = sorted(_models)
|
|
# All tiny model names on Hub
|
|
summary = {}
|
|
for model in models:
|
|
repo_id = f"hf-internal-testing/tiny-random-{model}"
|
|
model = model.split("-")[0]
|
|
try:
|
|
repo_info = hf_api.repo_info(repo_id)
|
|
content = {
|
|
"tokenizer_classes": set(),
|
|
"processor_classes": set(),
|
|
"model_classes": set(),
|
|
"sha": repo_info.sha,
|
|
}
|
|
except Exception:
|
|
continue
|
|
try:
|
|
time.sleep(1)
|
|
tokenizer_fast = AutoTokenizer.from_pretrained(repo_id)
|
|
content["tokenizer_classes"].add(tokenizer_fast.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
time.sleep(1)
|
|
tokenizer_slow = AutoTokenizer.from_pretrained(repo_id, use_fast=False)
|
|
content["tokenizer_classes"].add(tokenizer_slow.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
time.sleep(1)
|
|
img_p = AutoImageProcessor.from_pretrained(repo_id)
|
|
content["processor_classes"].add(img_p.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
time.sleep(1)
|
|
feat_p = AutoFeatureExtractor.from_pretrained(repo_id)
|
|
if not isinstance(feat_p, BaseImageProcessor):
|
|
content["processor_classes"].add(feat_p.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
time.sleep(1)
|
|
model_class = getattr(transformers, model)
|
|
m = model_class.from_pretrained(repo_id)
|
|
content["model_classes"].add(m.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
try:
|
|
time.sleep(1)
|
|
model_class = getattr(transformers, f"TF{model}")
|
|
m = model_class.from_pretrained(repo_id)
|
|
content["model_classes"].add(m.__class__.__name__)
|
|
except Exception:
|
|
pass
|
|
|
|
content["tokenizer_classes"] = sorted(content["tokenizer_classes"])
|
|
content["processor_classes"] = sorted(content["processor_classes"])
|
|
content["model_classes"] = sorted(content["model_classes"])
|
|
|
|
summary[model] = content
|
|
with open(os.path.join(output_path, "hub_tiny_model_summary.json"), "w") as fp:
|
|
json.dump(summary, fp, ensure_ascii=False, indent=4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.")
|
|
args = parser.parse_args()
|
|
|
|
# This has to be `spawn` to avoid hanging forever!
|
|
multiprocessing.set_start_method("spawn")
|
|
|
|
output_path = "tiny_models"
|
|
all = True
|
|
model_types = None
|
|
models_to_skip = get_tiny_model_names_from_repo()
|
|
no_check = True
|
|
upload = True
|
|
organization = "hf-internal-testing"
|
|
|
|
create_tiny_models(
|
|
output_path,
|
|
all,
|
|
model_types,
|
|
models_to_skip,
|
|
no_check,
|
|
upload,
|
|
organization,
|
|
token=os.environ.get("TOKEN", None),
|
|
num_workers=args.num_workers,
|
|
)
|