372 lines
16 KiB
Python
Executable File
372 lines
16 KiB
Python
Executable File
# coding=utf-8
|
|
# Copyright 2021 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Utility that updates the metadata of the Transformers library in the repository `huggingface/transformers-metadata`.
|
|
|
|
Usage for an update (as used by the GitHub action `update_metadata`):
|
|
|
|
```bash
|
|
python utils/update_metadata.py --token <token> --commit_sha <commit_sha>
|
|
```
|
|
|
|
Usage to check all pipelines are properly defined in the constant `PIPELINE_TAGS_AND_AUTO_MODELS` of this script, so
|
|
that new pipelines are properly added as metadata (as used in `make repo-consistency`):
|
|
|
|
```bash
|
|
python utils/update_metadata.py --check-only
|
|
```
|
|
"""
|
|
|
|
import argparse
|
|
import collections
|
|
import os
|
|
import re
|
|
import tempfile
|
|
from typing import Dict, List, Tuple
|
|
|
|
import pandas as pd
|
|
from datasets import Dataset
|
|
from huggingface_hub import hf_hub_download, upload_folder
|
|
|
|
from transformers.utils import direct_transformers_import
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/update_metadata.py
|
|
TRANSFORMERS_PATH = "src/transformers"
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
transformers_module = direct_transformers_import(TRANSFORMERS_PATH)
|
|
|
|
|
|
# Regexes that match TF/Flax/PT model names.
|
|
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
|
|
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
|
|
|
|
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
|
|
PIPELINE_TAGS_AND_AUTO_MODELS = [
|
|
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
|
|
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
|
|
("image-feature-extraction", "MODEL_FOR_IMAGE_MAPPING_NAMES", "AutoModel"),
|
|
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
|
|
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
|
|
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
|
|
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
|
|
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
|
|
("image-to-image", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES", "AutoModelForImageToImage"),
|
|
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
|
|
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
|
|
(
|
|
"zero-shot-object-detection",
|
|
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES",
|
|
"AutoModelForZeroShotObjectDetection",
|
|
),
|
|
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
|
|
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
|
|
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
|
|
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
|
|
(
|
|
"table-question-answering",
|
|
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
|
|
"AutoModelForTableQuestionAnswering",
|
|
),
|
|
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
|
|
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
|
|
(
|
|
"next-sentence-prediction",
|
|
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
|
|
"AutoModelForNextSentencePrediction",
|
|
),
|
|
(
|
|
"audio-frame-classification",
|
|
"MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES",
|
|
"AutoModelForAudioFrameClassification",
|
|
),
|
|
("audio-xvector", "MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES", "AutoModelForAudioXVector"),
|
|
(
|
|
"document-question-answering",
|
|
"MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES",
|
|
"AutoModelForDocumentQuestionAnswering",
|
|
),
|
|
(
|
|
"visual-question-answering",
|
|
"MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES",
|
|
"AutoModelForVisualQuestionAnswering",
|
|
),
|
|
("image-to-text", "MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES", "AutoModelForVision2Seq"),
|
|
(
|
|
"zero-shot-image-classification",
|
|
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES",
|
|
"AutoModelForZeroShotImageClassification",
|
|
),
|
|
("depth-estimation", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES", "AutoModelForDepthEstimation"),
|
|
("video-classification", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForVideoClassification"),
|
|
("mask-generation", "MODEL_FOR_MASK_GENERATION_MAPPING_NAMES", "AutoModelForMaskGeneration"),
|
|
("text-to-audio", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING_NAMES", "AutoModelForTextToSpectrogram"),
|
|
("text-to-audio", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING_NAMES", "AutoModelForTextToWaveform"),
|
|
]
|
|
|
|
|
|
def camel_case_split(identifier: str) -> List[str]:
|
|
"""
|
|
Split a camel-cased name into words.
|
|
|
|
Args:
|
|
identifier (`str`): The camel-cased name to parse.
|
|
|
|
Returns:
|
|
`List[str]`: The list of words in the identifier (as seprated by capital letters).
|
|
|
|
Example:
|
|
|
|
```py
|
|
>>> camel_case_split("CamelCasedClass")
|
|
["Camel", "Cased", "Class"]
|
|
```
|
|
"""
|
|
# Regex thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
|
|
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
|
|
return [m.group(0) for m in matches]
|
|
|
|
|
|
def get_frameworks_table() -> pd.DataFrame:
|
|
"""
|
|
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto
|
|
modules.
|
|
"""
|
|
# Dictionary model names to config.
|
|
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
|
|
model_prefix_to_model_type = {
|
|
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items()
|
|
}
|
|
|
|
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
|
|
pt_models = collections.defaultdict(bool)
|
|
tf_models = collections.defaultdict(bool)
|
|
flax_models = collections.defaultdict(bool)
|
|
|
|
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
|
|
for attr_name in dir(transformers_module):
|
|
lookup_dict = None
|
|
if _re_tf_models.match(attr_name) is not None:
|
|
lookup_dict = tf_models
|
|
attr_name = _re_tf_models.match(attr_name).groups()[0]
|
|
elif _re_flax_models.match(attr_name) is not None:
|
|
lookup_dict = flax_models
|
|
attr_name = _re_flax_models.match(attr_name).groups()[0]
|
|
elif _re_pt_models.match(attr_name) is not None:
|
|
lookup_dict = pt_models
|
|
attr_name = _re_pt_models.match(attr_name).groups()[0]
|
|
|
|
if lookup_dict is not None:
|
|
while len(attr_name) > 0:
|
|
if attr_name in model_prefix_to_model_type:
|
|
lookup_dict[model_prefix_to_model_type[attr_name]] = True
|
|
break
|
|
# Try again after removing the last word in the name
|
|
attr_name = "".join(camel_case_split(attr_name)[:-1])
|
|
|
|
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys()))
|
|
all_models = list(all_models)
|
|
all_models.sort()
|
|
|
|
data = {"model_type": all_models}
|
|
data["pytorch"] = [pt_models[t] for t in all_models]
|
|
data["tensorflow"] = [tf_models[t] for t in all_models]
|
|
data["flax"] = [flax_models[t] for t in all_models]
|
|
|
|
# Now let's find the right processing class for each model. In order we check if there is a Processor, then a
|
|
# Tokenizer, then a FeatureExtractor, then an ImageProcessor
|
|
processors = {}
|
|
for t in all_models:
|
|
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
|
|
processors[t] = "AutoProcessor"
|
|
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
|
|
processors[t] = "AutoTokenizer"
|
|
elif t in transformers_module.models.auto.image_processing_auto.IMAGE_PROCESSOR_MAPPING_NAMES:
|
|
processors[t] = "AutoImageProcessor"
|
|
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
|
|
processors[t] = "AutoFeatureExtractor"
|
|
else:
|
|
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
|
|
processors[t] = "AutoTokenizer"
|
|
|
|
data["processor"] = [processors[t] for t in all_models]
|
|
|
|
return pd.DataFrame(data)
|
|
|
|
|
|
def update_pipeline_and_auto_class_table(table: Dict[str, Tuple[str, str]]) -> Dict[str, Tuple[str, str]]:
|
|
"""
|
|
Update the table maping models to pipelines and auto classes without removing old keys if they don't exist anymore.
|
|
|
|
Args:
|
|
table (`Dict[str, Tuple[str, str]]`):
|
|
The existing table mapping model names to a tuple containing the pipeline tag and the auto-class name with
|
|
which they should be used.
|
|
|
|
Returns:
|
|
`Dict[str, Tuple[str, str]]`: The updated table in the same format.
|
|
"""
|
|
auto_modules = [
|
|
transformers_module.models.auto.modeling_auto,
|
|
transformers_module.models.auto.modeling_tf_auto,
|
|
transformers_module.models.auto.modeling_flax_auto,
|
|
]
|
|
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
|
|
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"]
|
|
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"]
|
|
# Loop through all three frameworks
|
|
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
|
|
# The type of pipeline may not exist in this framework
|
|
if not hasattr(module, mapping):
|
|
continue
|
|
# First extract all model_names
|
|
model_names = []
|
|
for name in getattr(module, mapping).values():
|
|
if isinstance(name, str):
|
|
model_names.append(name)
|
|
else:
|
|
model_names.extend(list(name))
|
|
|
|
# Add pipeline tag and auto model class for those models
|
|
table.update({model_name: (pipeline_tag, cls) for model_name in model_names})
|
|
|
|
return table
|
|
|
|
|
|
def update_metadata(token: str, commit_sha: str):
|
|
"""
|
|
Update the metadata for the Transformers repo in `huggingface/transformers-metadata`.
|
|
|
|
Args:
|
|
token (`str`): A valid token giving write access to `huggingface/transformers-metadata`.
|
|
commit_sha (`str`): The commit SHA on Transformers corresponding to this update.
|
|
"""
|
|
frameworks_table = get_frameworks_table()
|
|
frameworks_dataset = Dataset.from_pandas(frameworks_table)
|
|
|
|
resolved_tags_file = hf_hub_download(
|
|
"huggingface/transformers-metadata", "pipeline_tags.json", repo_type="dataset", token=token
|
|
)
|
|
tags_dataset = Dataset.from_json(resolved_tags_file)
|
|
table = {
|
|
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
|
|
for i in range(len(tags_dataset))
|
|
}
|
|
table = update_pipeline_and_auto_class_table(table)
|
|
|
|
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
|
|
model_classes = sorted(table.keys())
|
|
tags_table = pd.DataFrame(
|
|
{
|
|
"model_class": model_classes,
|
|
"pipeline_tag": [table[m][0] for m in model_classes],
|
|
"auto_class": [table[m][1] for m in model_classes],
|
|
}
|
|
)
|
|
tags_dataset = Dataset.from_pandas(tags_table)
|
|
|
|
hub_frameworks_json = hf_hub_download(
|
|
repo_id="huggingface/transformers-metadata",
|
|
filename="frameworks.json",
|
|
repo_type="dataset",
|
|
token=token,
|
|
)
|
|
with open(hub_frameworks_json) as f:
|
|
hub_frameworks_json = f.read()
|
|
|
|
hub_pipeline_tags_json = hf_hub_download(
|
|
repo_id="huggingface/transformers-metadata",
|
|
filename="pipeline_tags.json",
|
|
repo_type="dataset",
|
|
token=token,
|
|
)
|
|
with open(hub_pipeline_tags_json) as f:
|
|
hub_pipeline_tags_json = f.read()
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json"))
|
|
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json"))
|
|
|
|
with open(os.path.join(tmp_dir, "frameworks.json")) as f:
|
|
frameworks_json = f.read()
|
|
with open(os.path.join(tmp_dir, "pipeline_tags.json")) as f:
|
|
pipeline_tags_json = f.read()
|
|
|
|
frameworks_equal = hub_frameworks_json == frameworks_json
|
|
hub_pipeline_tags_equal = hub_pipeline_tags_json == pipeline_tags_json
|
|
|
|
if frameworks_equal and hub_pipeline_tags_equal:
|
|
print("No updates on the Hub, not pushing the metadata files.")
|
|
return
|
|
|
|
if commit_sha is not None:
|
|
commit_message = (
|
|
f"Update with commit {commit_sha}\n\nSee: "
|
|
f"https://github.com/huggingface/transformers/commit/{commit_sha}"
|
|
)
|
|
else:
|
|
commit_message = "Update"
|
|
|
|
upload_folder(
|
|
repo_id="huggingface/transformers-metadata",
|
|
folder_path=tmp_dir,
|
|
repo_type="dataset",
|
|
token=token,
|
|
commit_message=commit_message,
|
|
)
|
|
|
|
|
|
def check_pipeline_tags():
|
|
"""
|
|
Check all pipeline tags are properly defined in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant of this script.
|
|
"""
|
|
in_table = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
|
|
pipeline_tasks = transformers_module.pipelines.SUPPORTED_TASKS
|
|
missing = []
|
|
for key in pipeline_tasks:
|
|
if key not in in_table:
|
|
model = pipeline_tasks[key]["pt"]
|
|
if isinstance(model, (list, tuple)):
|
|
model = model[0]
|
|
model = model.__name__
|
|
if model not in in_table.values():
|
|
missing.append(key)
|
|
|
|
if len(missing) > 0:
|
|
msg = ", ".join(missing)
|
|
raise ValueError(
|
|
"The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside "
|
|
f"`utils/update_metadata.py`: {msg}. Please add them!"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
|
|
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
|
|
parser.add_argument("--check-only", action="store_true", help="Activate to just check all pipelines are present.")
|
|
args = parser.parse_args()
|
|
|
|
if args.check_only:
|
|
check_pipeline_tags()
|
|
else:
|
|
update_metadata(args.token, args.commit_sha)
|