349 lines
15 KiB
Python
349 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import os
|
|
import re
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import direct_transformers_import
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/check_config_docstrings.py
|
|
PATH_TO_TRANSFORMERS = "src/transformers"
|
|
|
|
|
|
# This is to make sure the transformers module imported is the one in the repo.
|
|
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
|
|
|
|
CONFIG_MAPPING = transformers.models.auto.configuration_auto.CONFIG_MAPPING
|
|
|
|
SPECIAL_CASES_TO_ALLOW = {
|
|
# 'max_position_embeddings' is not used in modeling file, but needed for eval frameworks like Huggingface's lighteval (https://github.com/huggingface/lighteval/blob/af24080ea4f16eaf1683e353042a2dfc9099f038/src/lighteval/models/base_model.py#L264).
|
|
# periods and offsers are not used in modeling file, but used in the configuration file to define `layers_block_type` and `layers_num_experts`.
|
|
"JambaConfig": [
|
|
"max_position_embeddings",
|
|
"attn_layer_offset",
|
|
"attn_layer_period",
|
|
"expert_layer_offset",
|
|
"expert_layer_period",
|
|
],
|
|
# used to compute the property `self.chunk_length`
|
|
"EncodecConfig": ["overlap"],
|
|
# used to compute the property `self.layers_block_type`
|
|
"RecurrentGemmaConfig": ["block_types"],
|
|
# used as in the config to define `intermediate_size`
|
|
"MambaConfig": ["expand"],
|
|
# used as `self.bert_model = BertModel(config, ...)`
|
|
"DPRConfig": True,
|
|
"FuyuConfig": True,
|
|
# not used in modeling files, but it's an important information
|
|
"FSMTConfig": ["langs"],
|
|
# used internally in the configuration class file
|
|
"GPTNeoConfig": ["attention_types"],
|
|
# used internally in the configuration class file
|
|
"EsmConfig": ["is_folding_model"],
|
|
# used during training (despite we don't have training script for these models yet)
|
|
"Mask2FormerConfig": ["ignore_value"],
|
|
# `ignore_value` used during training (despite we don't have training script for these models yet)
|
|
# `norm` used in conversion script (despite not using in the modeling file)
|
|
"OneFormerConfig": ["ignore_value", "norm"],
|
|
# used during preprocessing and collation, see `collating_graphormer.py`
|
|
"GraphormerConfig": ["spatial_pos_max"],
|
|
# used internally in the configuration class file
|
|
"T5Config": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
# `tokenizer_class` get default value `T5Tokenizer` intentionally
|
|
"MT5Config": ["feed_forward_proj", "tokenizer_class"],
|
|
"UMT5Config": ["feed_forward_proj", "tokenizer_class"],
|
|
# used internally in the configuration class file
|
|
"LongT5Config": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
"Pop2PianoConfig": ["feed_forward_proj"],
|
|
# used internally in the configuration class file
|
|
"SwitchTransformersConfig": ["feed_forward_proj"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"BioGptConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"GLPNConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"SegformerConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"CvtConfig": ["layer_norm_eps"],
|
|
# having default values other than `1e-5` - we can't fix them without breaking
|
|
"PerceiverConfig": ["layer_norm_eps"],
|
|
# used internally to calculate the feature size
|
|
"InformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate the feature size
|
|
"TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate the feature size
|
|
"AutoformerConfig": ["num_static_real_features", "num_time_features"],
|
|
# used internally to calculate `mlp_dim`
|
|
"SamVisionConfig": ["mlp_ratio"],
|
|
# For (head) training, but so far not implemented
|
|
"ClapAudioConfig": ["num_classes"],
|
|
# Not used, but providing useful information to users
|
|
"SpeechT5HifiGanConfig": ["sampling_rate"],
|
|
# used internally in the configuration class file
|
|
"UdopConfig": ["feed_forward_proj"],
|
|
# Actually used in the config or generation config, in that case necessary for the sub-components generation
|
|
"SeamlessM4TConfig": [
|
|
"max_new_tokens",
|
|
"t2u_max_new_tokens",
|
|
"t2u_decoder_attention_heads",
|
|
"t2u_decoder_ffn_dim",
|
|
"t2u_decoder_layers",
|
|
"t2u_encoder_attention_heads",
|
|
"t2u_encoder_ffn_dim",
|
|
"t2u_encoder_layers",
|
|
"t2u_max_position_embeddings",
|
|
],
|
|
# Actually used in the config or generation config, in that case necessary for the sub-components generation
|
|
"SeamlessM4Tv2Config": [
|
|
"max_new_tokens",
|
|
"t2u_decoder_attention_heads",
|
|
"t2u_decoder_ffn_dim",
|
|
"t2u_decoder_layers",
|
|
"t2u_encoder_attention_heads",
|
|
"t2u_encoder_ffn_dim",
|
|
"t2u_encoder_layers",
|
|
"t2u_max_position_embeddings",
|
|
"t2u_variance_pred_dropout",
|
|
"t2u_variance_predictor_embed_dim",
|
|
"t2u_variance_predictor_hidden_dim",
|
|
"t2u_variance_predictor_kernel_size",
|
|
],
|
|
}
|
|
|
|
|
|
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
|
|
SPECIAL_CASES_TO_ALLOW.update(
|
|
{
|
|
"CLIPSegConfig": True,
|
|
"DeformableDetrConfig": True,
|
|
"DetaConfig": True,
|
|
"DinatConfig": True,
|
|
"DonutSwinConfig": True,
|
|
"EfficientFormerConfig": True,
|
|
"FastSpeech2ConformerConfig": True,
|
|
"FSMTConfig": True,
|
|
"JukeboxConfig": True,
|
|
"LayoutLMv2Config": True,
|
|
"MaskFormerSwinConfig": True,
|
|
"MT5Config": True,
|
|
# For backward compatibility with trust remote code models
|
|
"MptConfig": True,
|
|
"MptAttentionConfig": True,
|
|
"NatConfig": True,
|
|
"OneFormerConfig": True,
|
|
"PerceiverConfig": True,
|
|
"RagConfig": True,
|
|
"SpeechT5Config": True,
|
|
"SwinConfig": True,
|
|
"Swin2SRConfig": True,
|
|
"Swinv2Config": True,
|
|
"SwitchTransformersConfig": True,
|
|
"TableTransformerConfig": True,
|
|
"TapasConfig": True,
|
|
"UniSpeechConfig": True,
|
|
"UniSpeechSatConfig": True,
|
|
"WavLMConfig": True,
|
|
"WhisperConfig": True,
|
|
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
|
|
"JukeboxPriorConfig": True,
|
|
# TODO: @Younes (for `is_decoder`)
|
|
"Pix2StructTextConfig": True,
|
|
"IdeficsConfig": True,
|
|
"IdeficsVisionConfig": True,
|
|
"IdeficsPerceiverConfig": True,
|
|
}
|
|
)
|
|
|
|
|
|
def check_attribute_being_used(config_class, attributes, default_value, source_strings):
|
|
"""Check if any name in `attributes` is used in one of the strings in `source_strings`
|
|
|
|
Args:
|
|
config_class (`type`):
|
|
The configuration class for which the arguments in its `__init__` will be checked.
|
|
attributes (`List[str]`):
|
|
The name of an argument (or attribute) and its variant names if any.
|
|
default_value (`Any`):
|
|
A default value for the attribute in `attributes` assigned in the `__init__` of `config_class`.
|
|
source_strings (`List[str]`):
|
|
The python source code strings in the same modeling directory where `config_class` is defined. The file
|
|
containing the definition of `config_class` should be excluded.
|
|
"""
|
|
attribute_used = False
|
|
for attribute in attributes:
|
|
for modeling_source in source_strings:
|
|
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
|
|
if (
|
|
f"config.{attribute}" in modeling_source
|
|
or f'getattr(config, "{attribute}"' in modeling_source
|
|
or f'getattr(self.config, "{attribute}"' in modeling_source
|
|
):
|
|
attribute_used = True
|
|
# Deal with multi-line cases
|
|
elif (
|
|
re.search(
|
|
rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"',
|
|
modeling_source,
|
|
)
|
|
is not None
|
|
):
|
|
attribute_used = True
|
|
# `SequenceSummary` is called with `SequenceSummary(config)`
|
|
elif attribute in [
|
|
"summary_type",
|
|
"summary_use_proj",
|
|
"summary_activation",
|
|
"summary_last_dropout",
|
|
"summary_proj_to_labels",
|
|
"summary_first_dropout",
|
|
]:
|
|
if "SequenceSummary" in modeling_source:
|
|
attribute_used = True
|
|
if attribute_used:
|
|
break
|
|
if attribute_used:
|
|
break
|
|
|
|
# common and important attributes, even if they do not always appear in the modeling files
|
|
attributes_to_allow = [
|
|
"bos_index",
|
|
"eos_index",
|
|
"pad_index",
|
|
"unk_index",
|
|
"mask_index",
|
|
"image_size",
|
|
"use_cache",
|
|
"out_features",
|
|
"out_indices",
|
|
"sampling_rate",
|
|
# backbone related arguments passed to load_backbone
|
|
"use_pretrained_backbone",
|
|
"backbone",
|
|
"backbone_config",
|
|
"use_timm_backbone",
|
|
"backbone_kwargs",
|
|
]
|
|
attributes_used_in_generation = ["encoder_no_repeat_ngram_size"]
|
|
|
|
# Special cases to be allowed
|
|
case_allowed = True
|
|
if not attribute_used:
|
|
case_allowed = False
|
|
for attribute in attributes:
|
|
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
|
|
if attribute in ["is_encoder_decoder"] and default_value is True:
|
|
case_allowed = True
|
|
elif attribute in ["tie_word_embeddings"] and default_value is False:
|
|
case_allowed = True
|
|
|
|
# Allow cases without checking the default value in the configuration class
|
|
elif attribute in attributes_to_allow + attributes_used_in_generation:
|
|
case_allowed = True
|
|
elif attribute.endswith("_token_id"):
|
|
case_allowed = True
|
|
|
|
# configuration class specific cases
|
|
if not case_allowed:
|
|
allowed_cases = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [])
|
|
case_allowed = allowed_cases is True or attribute in allowed_cases
|
|
|
|
return attribute_used or case_allowed
|
|
|
|
|
|
def check_config_attributes_being_used(config_class):
|
|
"""Check the arguments in `__init__` of `config_class` are used in the modeling files in the same directory
|
|
|
|
Args:
|
|
config_class (`type`):
|
|
The configuration class for which the arguments in its `__init__` will be checked.
|
|
"""
|
|
# Get the parameters in `__init__` of the configuration class, and the default values if any
|
|
signature = dict(inspect.signature(config_class.__init__).parameters)
|
|
parameter_names = [x for x in list(signature.keys()) if x not in ["self", "kwargs"]]
|
|
parameter_defaults = [signature[param].default for param in parameter_names]
|
|
|
|
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
|
|
# as one variant is used, the test should pass
|
|
reversed_attribute_map = {}
|
|
if len(config_class.attribute_map) > 0:
|
|
reversed_attribute_map = {v: k for k, v in config_class.attribute_map.items()}
|
|
|
|
# Get the path to modeling source files
|
|
config_source_file = inspect.getsourcefile(config_class)
|
|
model_dir = os.path.dirname(config_source_file)
|
|
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
|
|
modeling_paths = [os.path.join(model_dir, fn) for fn in os.listdir(model_dir) if fn.startswith("modeling_")]
|
|
|
|
# Get the source code strings
|
|
modeling_sources = []
|
|
for path in modeling_paths:
|
|
if os.path.isfile(path):
|
|
with open(path, encoding="utf8") as fp:
|
|
modeling_sources.append(fp.read())
|
|
|
|
unused_attributes = []
|
|
for config_param, default_value in zip(parameter_names, parameter_defaults):
|
|
# `attributes` here is all the variant names for `config_param`
|
|
attributes = [config_param]
|
|
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
|
|
# corresponding modeling files. As long as one of them appears, it is fine.
|
|
if config_param in reversed_attribute_map:
|
|
attributes.append(reversed_attribute_map[config_param])
|
|
|
|
if not check_attribute_being_used(config_class, attributes, default_value, modeling_sources):
|
|
unused_attributes.append(attributes[0])
|
|
|
|
return sorted(unused_attributes)
|
|
|
|
|
|
def check_config_attributes():
|
|
"""Check the arguments in `__init__` of all configuration classes are used in python files"""
|
|
configs_with_unused_attributes = {}
|
|
for _config_class in list(CONFIG_MAPPING.values()):
|
|
# Skip deprecated models
|
|
if "models.deprecated" in _config_class.__module__:
|
|
continue
|
|
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
|
|
config_classes_in_module = [
|
|
cls
|
|
for name, cls in inspect.getmembers(
|
|
inspect.getmodule(_config_class),
|
|
lambda x: inspect.isclass(x)
|
|
and issubclass(x, PretrainedConfig)
|
|
and inspect.getmodule(x) == inspect.getmodule(_config_class),
|
|
)
|
|
]
|
|
for config_class in config_classes_in_module:
|
|
unused_attributes = check_config_attributes_being_used(config_class)
|
|
if len(unused_attributes) > 0:
|
|
configs_with_unused_attributes[config_class.__name__] = unused_attributes
|
|
|
|
if len(configs_with_unused_attributes) > 0:
|
|
error = "The following configuration classes contain unused attributes in the corresponding modeling files:\n"
|
|
for name, attributes in configs_with_unused_attributes.items():
|
|
error += f"{name}: {attributes}\n"
|
|
|
|
raise ValueError(error)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
check_config_attributes()
|