163 lines
8.5 KiB
Python
163 lines
8.5 KiB
Python
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import sys
|
|
|
|
|
|
SRC_DIR = os.path.join(os.path.dirname(__file__), "src")
|
|
sys.path.append(SRC_DIR)
|
|
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForMaskedLM,
|
|
AutoModelForQuestionAnswering,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
add_start_docstrings,
|
|
)
|
|
|
|
|
|
dependencies = ["torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub"]
|
|
|
|
|
|
@add_start_docstrings(AutoConfig.__doc__)
|
|
def config(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased') # Download configuration from huggingface.co and cache.
|
|
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/') # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
|
|
config = torch.hub.load('huggingface/transformers', 'config', './test/bert_saved_model/my_configuration.json')
|
|
config = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False)
|
|
assert config.output_attentions == True
|
|
config, unused_kwargs = torch.hub.load('huggingface/transformers', 'config', 'google-bert/bert-base-uncased', output_attentions=True, foo=False, return_unused_kwargs=True)
|
|
assert config.output_attentions == True
|
|
assert unused_kwargs == {'foo': False}
|
|
|
|
"""
|
|
|
|
return AutoConfig.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoTokenizer.__doc__)
|
|
def tokenizer(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', 'google-bert/bert-base-uncased') # Download vocabulary from huggingface.co and cache.
|
|
tokenizer = torch.hub.load('huggingface/transformers', 'tokenizer', './test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
|
|
|
|
"""
|
|
|
|
return AutoTokenizer.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoModel.__doc__)
|
|
def model(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache.
|
|
model = torch.hub.load('huggingface/transformers', 'model', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = torch.hub.load('huggingface/transformers', 'model', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading
|
|
assert model.config.output_attentions == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
|
|
model = torch.hub.load('huggingface/transformers', 'model', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
|
|
|
"""
|
|
|
|
return AutoModel.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoModelForCausalLM.__doc__)
|
|
def modelForCausalLM(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2') # Download model and configuration from huggingface.co and cache.
|
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './test/saved_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', 'openai-community/gpt2', output_attentions=True) # Update configuration during loading
|
|
assert model.config.output_attentions == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_pretrained('./tf_model/gpt_tf_model_config.json')
|
|
model = torch.hub.load('huggingface/transformers', 'modelForCausalLM', './tf_model/gpt_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
|
|
|
"""
|
|
return AutoModelForCausalLM.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoModelForMaskedLM.__doc__)
|
|
def modelForMaskedLM(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache.
|
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading
|
|
assert model.config.output_attentions == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
|
|
model = torch.hub.load('huggingface/transformers', 'modelForMaskedLM', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
|
|
|
"""
|
|
|
|
return AutoModelForMaskedLM.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoModelForSequenceClassification.__doc__)
|
|
def modelForSequenceClassification(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache.
|
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading
|
|
assert model.config.output_attentions == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
|
|
model = torch.hub.load('huggingface/transformers', 'modelForSequenceClassification', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
|
|
|
"""
|
|
|
|
return AutoModelForSequenceClassification.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__)
|
|
def modelForQuestionAnswering(*args, **kwargs):
|
|
r"""
|
|
# Using torch.hub !
|
|
import torch
|
|
|
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased') # Download model and configuration from huggingface.co and cache.
|
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './test/bert_model/') # E.g. model was saved using `save_pretrained('./test/saved_model/')`
|
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', 'google-bert/bert-base-uncased', output_attentions=True) # Update configuration during loading
|
|
assert model.config.output_attentions == True
|
|
# Loading from a TF checkpoint file instead of a PyTorch model (slower)
|
|
config = AutoConfig.from_pretrained('./tf_model/bert_tf_model_config.json')
|
|
model = torch.hub.load('huggingface/transformers', 'modelForQuestionAnswering', './tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
|
|
|
|
"""
|
|
return AutoModelForQuestionAnswering.from_pretrained(*args, **kwargs)
|