157 lines
4.8 KiB
Python
Executable File
157 lines
4.8 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Usage:
|
|
# ./gen-card-allenai-wmt16.py
|
|
|
|
import os
|
|
from pathlib import Path
|
|
|
|
|
|
def write_model_card(model_card_dir, src_lang, tgt_lang, model_name):
|
|
|
|
texts = {
|
|
"en": "Machine learning is great, isn't it?",
|
|
"ru": "Машинное обучение - это здорово, не так ли?",
|
|
"de": "Maschinelles Lernen ist großartig, nicht wahr?",
|
|
}
|
|
|
|
# BLUE scores as follows:
|
|
# "pair": [fairseq, transformers]
|
|
scores = {
|
|
"wmt16-en-de-dist-12-1": [28.3, 27.52],
|
|
"wmt16-en-de-dist-6-1": [27.4, 27.11],
|
|
"wmt16-en-de-12-1": [26.9, 25.75],
|
|
}
|
|
pair = f"{src_lang}-{tgt_lang}"
|
|
|
|
readme = f"""
|
|
---
|
|
language:
|
|
- {src_lang}
|
|
- {tgt_lang}
|
|
thumbnail:
|
|
tags:
|
|
- translation
|
|
- wmt16
|
|
- allenai
|
|
license: apache-2.0
|
|
datasets:
|
|
- wmt16
|
|
metrics:
|
|
- bleu
|
|
---
|
|
|
|
# FSMT
|
|
|
|
## Model description
|
|
|
|
This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
|
|
|
|
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
|
|
|
|
All 3 models are available:
|
|
|
|
* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)
|
|
* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)
|
|
* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)
|
|
|
|
|
|
## Intended uses & limitations
|
|
|
|
#### How to use
|
|
|
|
```python
|
|
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
|
|
mname = "allenai/{model_name}"
|
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
|
model = FSMTForConditionalGeneration.from_pretrained(mname)
|
|
|
|
input = "{texts[src_lang]}"
|
|
input_ids = tokenizer.encode(input, return_tensors="pt")
|
|
outputs = model.generate(input_ids)
|
|
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
print(decoded) # {texts[tgt_lang]}
|
|
|
|
```
|
|
|
|
#### Limitations and bias
|
|
|
|
|
|
## Training data
|
|
|
|
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
|
|
|
|
## Eval results
|
|
|
|
Here are the BLEU scores:
|
|
|
|
model | fairseq | transformers
|
|
-------|---------|----------
|
|
{model_name} | {scores[model_name][0]} | {scores[model_name][1]}
|
|
|
|
The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.
|
|
|
|
The score was calculated using this code:
|
|
|
|
```bash
|
|
git clone https://github.com/huggingface/transformers
|
|
cd transformers
|
|
export PAIR={pair}
|
|
export DATA_DIR=data/$PAIR
|
|
export SAVE_DIR=data/$PAIR
|
|
export BS=8
|
|
export NUM_BEAMS=5
|
|
mkdir -p $DATA_DIR
|
|
sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source
|
|
sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target
|
|
echo $PAIR
|
|
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
|
|
```
|
|
|
|
## Data Sources
|
|
|
|
- [training, etc.](http://www.statmt.org/wmt16/)
|
|
- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)
|
|
|
|
|
|
### BibTeX entry and citation info
|
|
|
|
```
|
|
@misc{{kasai2020deep,
|
|
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
|
|
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
|
|
year={{2020}},
|
|
eprint={{2006.10369}},
|
|
archivePrefix={{arXiv}},
|
|
primaryClass={{cs.CL}}
|
|
}}
|
|
```
|
|
|
|
"""
|
|
model_card_dir.mkdir(parents=True, exist_ok=True)
|
|
path = os.path.join(model_card_dir, "README.md")
|
|
print(f"Generating {path}")
|
|
with open(path, "w", encoding="utf-8") as f:
|
|
f.write(readme)
|
|
|
|
# make sure we are under the root of the project
|
|
repo_dir = Path(__file__).resolve().parent.parent.parent
|
|
model_cards_dir = repo_dir / "model_cards"
|
|
|
|
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
|
|
model_card_dir = model_cards_dir / "allenai" / model_name
|
|
write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
|