transformers/examples/tensorflow/test_tensorflow_examples.py

338 lines
11 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import logging
import os
import sys
from unittest import skip
from unittest.mock import patch
import tensorflow as tf
from packaging.version import parse
try:
import tf_keras as keras
except (ModuleNotFoundError, ImportError):
import keras
if parse(keras.__version__).major > 2:
raise ValueError(
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
"Transformers. Please install the backwards-compatible tf-keras package with "
"`pip install tf-keras`."
)
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
SRC_DIRS = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
"text-generation",
"text-classification",
"token-classification",
"language-modeling",
"multiple-choice",
"question-answering",
"summarization",
"translation",
"image-classification",
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm
import run_image_classification
import run_mlm
import run_ner
import run_qa as run_squad
import run_summarization
import run_swag
import run_text_classification
import run_translation
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()
def get_setup_file():
parser = argparse.ArgumentParser()
parser.add_argument("-f")
args = parser.parse_args()
return args.f
def get_results(output_dir):
results = {}
path = os.path.join(output_dir, "all_results.json")
if os.path.exists(path):
with open(path, "r") as f:
results = json.load(f)
else:
raise ValueError(f"can't find {path}")
return results
def is_cuda_available():
return bool(tf.config.list_physical_devices("GPU"))
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class ExamplesTests(TestCasePlus):
@skip("Skipping until shape inference for to_tf_dataset PR is merged.")
def test_run_text_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_text_classification.py
--model_name_or_path distilbert/distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
if is_cuda_available():
testargs.append("--fp16")
with patch.object(sys, "argv", testargs):
run_text_classification.main()
# Reset the mixed precision policy so we don't break other tests
keras.mixed_precision.set_global_policy("float32")
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_accuracy"], 0.75)
def test_run_clm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_clm.py
--model_name_or_path distilbert/distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--num_train_epochs 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
if len(tf.config.list_physical_devices("GPU")) > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
with patch.object(sys, "argv", testargs):
run_clm.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_perplexity"], 100)
def test_run_mlm(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_mlm.py
--model_name_or_path distilbert/distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--max_seq_length 64
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--prediction_loss_only
--num_train_epochs=1
--learning_rate=1e-4
""".split()
with patch.object(sys, "argv", testargs):
run_mlm.main()
result = get_results(tmp_dir)
self.assertLess(result["eval_perplexity"], 42)
def test_run_ner(self):
# with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
epochs = 7 if get_gpu_count() > 1 else 2
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_ner.py
--model_name_or_path google-bert/bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(sys, "argv", testargs):
run_ner.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["accuracy"], 0.75)
def test_run_squad(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_qa.py
--model_name_or_path google-bert/bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=10
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_squad.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["f1"], 30)
self.assertGreaterEqual(result["exact"], 30)
def test_run_swag(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_swag.py
--model_name_or_path google-bert/bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=20
--warmup_steps=2
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_swag.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["val_accuracy"], 0.8)
@slow
def test_run_summarization(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_summarization.py
--model_name_or_path google-t5/t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--max_steps=50
--warmup_steps=8
--do_train
--do_eval
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(sys, "argv", testargs):
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["rouge1"], 10)
self.assertGreaterEqual(result["rouge2"], 2)
self.assertGreaterEqual(result["rougeL"], 7)
self.assertGreaterEqual(result["rougeLsum"], 7)
@slow
def test_run_translation(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_translation.py
--model_name_or_path Rocketknight1/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--warmup_steps=8
--do_train
--do_eval
--learning_rate=3e-3
--num_train_epochs 12
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
""".split()
with patch.object(sys, "argv", testargs):
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["bleu"], 30)
def test_run_image_classification(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_image_classification.py
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--model_name_or_path microsoft/resnet-18
--do_train
--do_eval
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--output_dir {tmp_dir}
--overwrite_output_dir
--dataloader_num_workers 16
--num_train_epochs 2
--train_val_split 0.1
--seed 42
--ignore_mismatched_sizes True
""".split()
with patch.object(sys, "argv", testargs):
run_image_classification.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["accuracy"], 0.7)