68 lines
2.8 KiB
Markdown
68 lines
2.8 KiB
Markdown
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
|
the License. You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
|
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
specific language governing permissions and limitations under the License.
|
|
|
|
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
|
rendered properly in your Markdown viewer.
|
|
|
|
-->
|
|
|
|
# 使用 🤗 Tokenizers 中的分词器
|
|
|
|
[`PreTrainedTokenizerFast`] 依赖于 [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。
|
|
|
|
在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器:
|
|
|
|
```python
|
|
>>> from tokenizers import Tokenizer
|
|
>>> from tokenizers.models import BPE
|
|
>>> from tokenizers.trainers import BpeTrainer
|
|
>>> from tokenizers.pre_tokenizers import Whitespace
|
|
|
|
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
|
|
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
|
|
|
|
>>> tokenizer.pre_tokenizer = Whitespace()
|
|
>>> files = [...]
|
|
>>> tokenizer.train(files, trainer)
|
|
```
|
|
|
|
现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。
|
|
|
|
## 直接从分词器对象加载
|
|
|
|
让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。[`PreTrainedTokenizerFast`] 类允许通过接受已实例化的 *tokenizer* 对象作为参数,进行轻松实例化:
|
|
|
|
```python
|
|
>>> from transformers import PreTrainedTokenizerFast
|
|
|
|
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
|
|
```
|
|
|
|
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。
|
|
|
|
## 从 JSON 文件加载
|
|
|
|
为了从 JSON 文件中加载分词器,让我们先保存我们的分词器:
|
|
|
|
```python
|
|
>>> tokenizer.save("tokenizer.json")
|
|
```
|
|
|
|
我们保存此文件的路径可以通过 `tokenizer_file` 参数传递给 [`PreTrainedTokenizerFast`] 初始化方法:
|
|
|
|
```python
|
|
>>> from transformers import PreTrainedTokenizerFast
|
|
|
|
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
|
|
```
|
|
|
|
现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。
|