204 lines
8.2 KiB
Python
204 lines
8.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 the HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from transformers import (
|
|
AutoModelForSeq2SeqLM,
|
|
BertTokenizer,
|
|
DataCollatorForSeq2Seq,
|
|
EncoderDecoderModel,
|
|
GenerationConfig,
|
|
Seq2SeqTrainer,
|
|
Seq2SeqTrainingArguments,
|
|
T5Tokenizer,
|
|
)
|
|
from transformers.testing_utils import TestCasePlus, require_sentencepiece, require_torch, slow
|
|
from transformers.utils import is_datasets_available
|
|
|
|
|
|
if is_datasets_available():
|
|
import datasets
|
|
|
|
|
|
@require_sentencepiece
|
|
class Seq2seqTrainerTester(TestCasePlus):
|
|
@slow
|
|
@require_torch
|
|
def test_finetune_bert2bert(self):
|
|
bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
|
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
|
|
|
|
bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
|
|
bert2bert.config.eos_token_id = tokenizer.sep_token_id
|
|
bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
|
|
bert2bert.config.max_length = 128
|
|
|
|
train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
|
|
val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")
|
|
|
|
train_dataset = train_dataset.select(range(32))
|
|
val_dataset = val_dataset.select(range(16))
|
|
|
|
batch_size = 4
|
|
|
|
def _map_to_encoder_decoder_inputs(batch):
|
|
# Tokenizer will automatically set [BOS] <text> [EOS]
|
|
inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
|
|
outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
|
|
batch["input_ids"] = inputs.input_ids
|
|
batch["attention_mask"] = inputs.attention_mask
|
|
|
|
batch["decoder_input_ids"] = outputs.input_ids
|
|
batch["labels"] = outputs.input_ids.copy()
|
|
batch["labels"] = [
|
|
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
|
|
]
|
|
batch["decoder_attention_mask"] = outputs.attention_mask
|
|
|
|
assert all(len(x) == 512 for x in inputs.input_ids)
|
|
assert all(len(x) == 128 for x in outputs.input_ids)
|
|
|
|
return batch
|
|
|
|
def _compute_metrics(pred):
|
|
labels_ids = pred.label_ids
|
|
pred_ids = pred.predictions
|
|
|
|
# all unnecessary tokens are removed
|
|
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
|
|
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
|
|
|
|
accuracy = sum([int(pred_str[i] == label_str[i]) for i in range(len(pred_str))]) / len(pred_str)
|
|
|
|
return {"accuracy": accuracy}
|
|
|
|
# map train dataset
|
|
train_dataset = train_dataset.map(
|
|
_map_to_encoder_decoder_inputs,
|
|
batched=True,
|
|
batch_size=batch_size,
|
|
remove_columns=["article", "highlights"],
|
|
)
|
|
train_dataset.set_format(
|
|
type="torch",
|
|
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
|
|
)
|
|
|
|
# same for validation dataset
|
|
val_dataset = val_dataset.map(
|
|
_map_to_encoder_decoder_inputs,
|
|
batched=True,
|
|
batch_size=batch_size,
|
|
remove_columns=["article", "highlights"],
|
|
)
|
|
val_dataset.set_format(
|
|
type="torch",
|
|
columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
|
|
)
|
|
|
|
output_dir = self.get_auto_remove_tmp_dir()
|
|
|
|
training_args = Seq2SeqTrainingArguments(
|
|
output_dir=output_dir,
|
|
per_device_train_batch_size=batch_size,
|
|
per_device_eval_batch_size=batch_size,
|
|
predict_with_generate=True,
|
|
eval_strategy="steps",
|
|
do_train=True,
|
|
do_eval=True,
|
|
warmup_steps=0,
|
|
eval_steps=2,
|
|
logging_steps=2,
|
|
)
|
|
|
|
# instantiate trainer
|
|
trainer = Seq2SeqTrainer(
|
|
model=bert2bert,
|
|
args=training_args,
|
|
compute_metrics=_compute_metrics,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=val_dataset,
|
|
tokenizer=tokenizer,
|
|
)
|
|
|
|
# start training
|
|
trainer.train()
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_return_sequences(self):
|
|
# Tests that the number of generated sequences is correct when num_return_sequences > 1
|
|
# and essentially ensuring that `accelerator.gather()` is used instead of `gather_for_metrics`
|
|
INPUT_COLUMN = "question"
|
|
TARGET_COLUMN = "answer"
|
|
MAX_INPUT_LENGTH = 256
|
|
MAX_TARGET_LENGTH = 256
|
|
|
|
dataset = datasets.load_dataset("gsm8k", "main", split="train[:38]")
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small")
|
|
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest")
|
|
gen_config = GenerationConfig.from_pretrained(
|
|
"google-t5/t5-small", max_length=None, min_length=None, max_new_tokens=256, min_new_tokens=1, num_beams=5
|
|
)
|
|
|
|
training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True)
|
|
|
|
trainer = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
compute_metrics=lambda x: {"samples": x[0].shape[0]},
|
|
)
|
|
|
|
def prepare_data(examples):
|
|
# Remove pairs where at least one record is none
|
|
inputs = examples[INPUT_COLUMN]
|
|
targets = examples[TARGET_COLUMN]
|
|
|
|
model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, truncation=True)
|
|
labels = tokenizer(text_target=targets, max_length=MAX_TARGET_LENGTH, truncation=True)
|
|
model_inputs["labels"] = labels["input_ids"]
|
|
|
|
return model_inputs
|
|
|
|
prepared_dataset = dataset.map(prepare_data, batched=True, remove_columns=[INPUT_COLUMN, TARGET_COLUMN])
|
|
dataset_len = len(prepared_dataset) # 38
|
|
|
|
for num_return_sequences in range(3, 0, -1):
|
|
gen_config.num_return_sequences = num_return_sequences
|
|
metrics = trainer.evaluate(eval_dataset=prepared_dataset, generation_config=gen_config)
|
|
assert (
|
|
metrics["eval_samples"] == dataset_len * num_return_sequences
|
|
), f"Got {metrics['eval_samples']}, expected: {dataset_len * num_return_sequences}"
|
|
|
|
@require_torch
|
|
def test_bad_generation_config_fail_early(self):
|
|
# Tests that a bad geneartion config causes the trainer to fail early
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small")
|
|
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="pt", padding="longest")
|
|
gen_config = GenerationConfig(do_sample=False, top_p=0.9) # bad: top_p is not compatible with do_sample=False
|
|
|
|
training_args = Seq2SeqTrainingArguments(".", predict_with_generate=True, generation_config=gen_config)
|
|
with self.assertRaises(ValueError) as exc:
|
|
_ = Seq2SeqTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
compute_metrics=lambda x: {"samples": x[0].shape[0]},
|
|
)
|
|
self.assertIn("The loaded generation config instance is invalid", str(exc.exception))
|