666 lines
25 KiB
Python
666 lines
25 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import importlib.metadata
|
|
import tempfile
|
|
import unittest
|
|
|
|
from packaging import version
|
|
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModel,
|
|
AutoModelForCausalLM,
|
|
AutoModelForSeq2SeqLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
BitsAndBytesConfig,
|
|
pipeline,
|
|
)
|
|
from transformers.testing_utils import (
|
|
is_bitsandbytes_available,
|
|
is_torch_available,
|
|
require_accelerate,
|
|
require_bitsandbytes,
|
|
require_torch,
|
|
require_torch_gpu,
|
|
require_torch_multi_gpu,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
def get_some_linear_layer(model):
|
|
if model.config.model_type == "gpt2":
|
|
return model.transformer.h[0].mlp.c_fc
|
|
elif model.config.model_type == "opt":
|
|
try:
|
|
return model.decoder.layers[0].fc1
|
|
except AttributeError:
|
|
# for AutoModelforCausalLM
|
|
return model.model.decoder.layers[0].fc1
|
|
else:
|
|
return model.transformer.h[0].mlp.dense_4h_to_h
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class LoRALayer(nn.Module):
|
|
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only"""
|
|
|
|
def __init__(self, module: nn.Module, rank: int):
|
|
super().__init__()
|
|
self.module = module
|
|
self.adapter = nn.Sequential(
|
|
nn.Linear(module.in_features, rank, bias=False),
|
|
nn.Linear(rank, module.out_features, bias=False),
|
|
)
|
|
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5
|
|
nn.init.normal_(self.adapter[0].weight, std=small_std)
|
|
nn.init.zeros_(self.adapter[1].weight)
|
|
self.adapter.to(module.weight.device)
|
|
|
|
def forward(self, input, *args, **kwargs):
|
|
return self.module(input, *args, **kwargs) + self.adapter(input)
|
|
|
|
|
|
if is_bitsandbytes_available():
|
|
import bitsandbytes as bnb
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@require_torch
|
|
@require_torch_gpu
|
|
@slow
|
|
class Base4bitTest(unittest.TestCase):
|
|
# We keep the constants inside the init function and model loading inside setUp function
|
|
|
|
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
|
|
# Therefore here we use only bloom-1b3 to test our module
|
|
model_name = "bigscience/bloom-1b7"
|
|
|
|
# Constant values
|
|
EXPECTED_RELATIVE_DIFFERENCE = (
|
|
2.109659552692574 # This was obtained on a RTX Titan so the number might slightly change
|
|
)
|
|
|
|
input_text = "Hello my name is"
|
|
EXPECTED_OUTPUTS = set()
|
|
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I")
|
|
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n")
|
|
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University")
|
|
MAX_NEW_TOKENS = 10
|
|
|
|
def setUp(self):
|
|
# Models and tokenizer
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
|
|
class Bnb4BitTest(Base4bitTest):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
# Models and tokenizer
|
|
self.model_fp16 = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name, torch_dtype=torch.float16, device_map="auto"
|
|
)
|
|
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.model_fp16
|
|
del self.model_4bit
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_quantization_num_parameters(self):
|
|
r"""
|
|
Test if the number of returned parameters is correct
|
|
|
|
See: https://github.com/huggingface/transformers/issues/25978
|
|
"""
|
|
num_params_4bit = self.model_4bit.num_parameters()
|
|
num_params_fp16 = self.model_fp16.num_parameters()
|
|
|
|
self.assertEqual(num_params_4bit, num_params_fp16)
|
|
|
|
def test_quantization_config_json_serialization(self):
|
|
r"""
|
|
A simple test to check if the quantization config is correctly serialized and deserialized
|
|
"""
|
|
config = self.model_4bit.config
|
|
|
|
self.assertTrue(hasattr(config, "quantization_config"))
|
|
|
|
_ = config.to_dict()
|
|
_ = config.to_diff_dict()
|
|
|
|
_ = config.to_json_string()
|
|
|
|
def test_memory_footprint(self):
|
|
r"""
|
|
A simple test to check if the model conversion has been done correctly by checking on the
|
|
memory footprint of the converted model and the class type of the linear layers of the converted models
|
|
"""
|
|
from bitsandbytes.nn import Params4bit
|
|
|
|
mem_fp16 = self.model_fp16.get_memory_footprint()
|
|
mem_4bit = self.model_4bit.get_memory_footprint()
|
|
|
|
self.assertAlmostEqual(mem_fp16 / mem_4bit, self.EXPECTED_RELATIVE_DIFFERENCE)
|
|
linear = get_some_linear_layer(self.model_4bit)
|
|
self.assertTrue(linear.weight.__class__ == Params4bit)
|
|
|
|
def test_original_dtype(self):
|
|
r"""
|
|
A simple test to check if the model succesfully stores the original dtype
|
|
"""
|
|
self.assertTrue(hasattr(self.model_4bit.config, "_pre_quantization_dtype"))
|
|
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype"))
|
|
self.assertTrue(self.model_4bit.config._pre_quantization_dtype == torch.float16)
|
|
|
|
def test_linear_are_4bit(self):
|
|
r"""
|
|
A simple test to check if the model conversion has been done correctly by checking on the
|
|
memory footprint of the converted model and the class type of the linear layers of the converted models
|
|
"""
|
|
from transformers import T5PreTrainedModel
|
|
|
|
self.model_fp16.get_memory_footprint()
|
|
self.model_4bit.get_memory_footprint()
|
|
|
|
for name, module in self.model_4bit.named_modules():
|
|
if isinstance(module, torch.nn.Linear):
|
|
if name not in ["lm_head"] + T5PreTrainedModel._keep_in_fp32_modules:
|
|
# 4-bit parameters are packed in uint8 variables
|
|
self.assertTrue(module.weight.dtype == torch.uint8)
|
|
|
|
def test_rwkv_4bit(self):
|
|
r"""
|
|
A simple test to check if 4-bit RWKV inference works as expected.
|
|
"""
|
|
model_id = "RWKV/rwkv-4-169m-pile"
|
|
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
|
|
tok = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
text = "Hello my name is"
|
|
input_ids = tok.encode(text, return_tensors="pt").to(0)
|
|
|
|
_ = model.generate(input_ids, max_new_tokens=30)
|
|
|
|
def test_generate_quality(self):
|
|
r"""
|
|
Test the generation quality of the quantized model and see that we are matching the expected output.
|
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get
|
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output.
|
|
"""
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
output_sequences = self.model_4bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
|
|
|
|
def test_generate_quality_config(self):
|
|
r"""
|
|
Test that loading the model with the config is equivalent
|
|
"""
|
|
bnb_config = BitsAndBytesConfig()
|
|
bnb_config.load_in_4bit = True
|
|
|
|
model_4bit_from_config = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name, quantization_config=bnb_config, device_map="auto"
|
|
)
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
output_sequences = model_4bit_from_config.generate(
|
|
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10
|
|
)
|
|
|
|
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
|
|
|
|
def test_device_and_dtype_assignment(self):
|
|
r"""
|
|
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error.
|
|
Checks also if other models are casted correctly.
|
|
"""
|
|
with self.assertRaises(ValueError):
|
|
# Tries with `str`
|
|
self.model_4bit.to("cpu")
|
|
|
|
with self.assertRaises(ValueError):
|
|
# Tries with a `dtype``
|
|
self.model_4bit.to(torch.float16)
|
|
|
|
with self.assertRaises(ValueError):
|
|
# Tries with a `device`
|
|
self.model_4bit.to(torch.device("cuda:0"))
|
|
|
|
with self.assertRaises(ValueError):
|
|
# Tries with a `device`
|
|
self.model_4bit.float()
|
|
|
|
with self.assertRaises(ValueError):
|
|
# Tries with a `device`
|
|
self.model_4bit.half()
|
|
|
|
# Test if we did not break anything
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
|
|
self.model_fp16 = self.model_fp16.to(torch.float32)
|
|
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
|
|
|
# Check this does not throw an error
|
|
_ = self.model_fp16.to("cpu")
|
|
|
|
# Check this does not throw an error
|
|
_ = self.model_fp16.half()
|
|
|
|
# Check this does not throw an error
|
|
_ = self.model_fp16.float()
|
|
|
|
def test_fp32_4bit_conversion(self):
|
|
r"""
|
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
|
|
"""
|
|
model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-small", load_in_4bit=True, device_map="auto")
|
|
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32)
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@require_torch
|
|
@require_torch_gpu
|
|
@slow
|
|
class Bnb4BitT5Test(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model_name = "google-t5/t5-small"
|
|
cls.dense_act_model_name = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
|
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name)
|
|
cls.input_text = "Translate in German: Hello, my dog is cute"
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_inference_without_keep_in_fp32(self):
|
|
r"""
|
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
|
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
|
|
both cases.
|
|
"""
|
|
from transformers import T5ForConditionalGeneration
|
|
|
|
modules = T5ForConditionalGeneration._keep_in_fp32_modules
|
|
T5ForConditionalGeneration._keep_in_fp32_modules = None
|
|
|
|
# test with `google-t5/t5-small`
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
|
|
_ = model.generate(**encoded_input)
|
|
|
|
# test with `flan-t5-small`
|
|
model = T5ForConditionalGeneration.from_pretrained(
|
|
self.dense_act_model_name, load_in_4bit=True, device_map="auto"
|
|
)
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
|
|
_ = model.generate(**encoded_input)
|
|
T5ForConditionalGeneration._keep_in_fp32_modules = modules
|
|
|
|
def test_inference_with_keep_in_fp32(self):
|
|
r"""
|
|
Test whether it is possible to mix both `4bit` and `fp32` weights when using `keep_in_fp32_modules` correctly.
|
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `google-t5/t5-small` uses `T5DenseReluDense`. We need to test
|
|
both cases.
|
|
"""
|
|
from transformers import T5ForConditionalGeneration
|
|
|
|
# test with `google-t5/t5-small`
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
|
|
|
|
# there was a bug with decoders - this test checks that it is fixed
|
|
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear4bit))
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
|
|
_ = model.generate(**encoded_input)
|
|
|
|
# test with `flan-t5-small`
|
|
model = T5ForConditionalGeneration.from_pretrained(
|
|
self.dense_act_model_name, load_in_4bit=True, device_map="auto"
|
|
)
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0)
|
|
_ = model.generate(**encoded_input)
|
|
|
|
|
|
class Classes4BitModelTest(Base4bitTest):
|
|
def setUp(self):
|
|
super().setUp()
|
|
# model_name
|
|
self.model_name = "bigscience/bloom-560m"
|
|
self.seq_to_seq_name = "google-t5/t5-small"
|
|
|
|
# Different types of model
|
|
|
|
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
|
|
# Sequence classification model
|
|
self.sequence_model = AutoModelForSequenceClassification.from_pretrained(
|
|
self.model_name, load_in_4bit=True, device_map="auto"
|
|
)
|
|
# CausalLM model
|
|
self.model_4bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True, device_map="auto")
|
|
# Seq2seq model
|
|
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained(
|
|
self.seq_to_seq_name, load_in_4bit=True, device_map="auto"
|
|
)
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.base_model
|
|
del self.sequence_model
|
|
del self.model_4bit
|
|
del self.seq_to_seq_model
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_correct_head_class(self):
|
|
r"""
|
|
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification)
|
|
are kept in their native class.
|
|
"""
|
|
from bitsandbytes.nn import Params4bit
|
|
|
|
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Params4bit)
|
|
|
|
# Other heads should be nn.Parameter
|
|
self.assertTrue(self.model_4bit.lm_head.weight.__class__ == torch.nn.Parameter)
|
|
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
|
|
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
|
|
|
|
|
|
class Pipeline4BitTest(Base4bitTest):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def tearDown(self):
|
|
r"""
|
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to
|
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27
|
|
"""
|
|
del self.pipe
|
|
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_pipeline(self):
|
|
r"""
|
|
The aim of this test is to verify that the mixed 4bit is compatible with `pipeline` from transformers. Since
|
|
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything
|
|
on pipline.
|
|
"""
|
|
# self._clear_cuda_cache()
|
|
self.pipe = pipeline(
|
|
"text-generation",
|
|
model=self.model_name,
|
|
model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.float16},
|
|
max_new_tokens=self.MAX_NEW_TOKENS,
|
|
)
|
|
|
|
# Real second forward pass
|
|
pipeline_output = self.pipe(self.input_text)
|
|
self.assertIn(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUTS)
|
|
|
|
|
|
@require_torch_multi_gpu
|
|
class Bnb4bitTestMultiGpu(Base4bitTest):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def test_multi_gpu_loading(self):
|
|
r"""
|
|
This tests that the model has been loaded and can be used correctly on a multi-GPU setup.
|
|
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice
|
|
"""
|
|
|
|
model_parallel = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name, load_in_4bit=True, device_map="balanced"
|
|
)
|
|
|
|
# Check correct device map
|
|
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1})
|
|
|
|
# Check that inference pass works on the model
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt")
|
|
|
|
# Second real batch
|
|
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10)
|
|
self.assertIn(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS)
|
|
|
|
|
|
class Bnb4BitTestTraining(Base4bitTest):
|
|
def setUp(self):
|
|
self.model_name = "facebook/opt-350m"
|
|
super().setUp()
|
|
|
|
def test_training(self):
|
|
if version.parse(importlib.metadata.version("bitsandbytes")) < version.parse("0.37.0"):
|
|
return
|
|
|
|
# Step 1: freeze all parameters
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_4bit=True)
|
|
|
|
self.assertEqual(set(model.hf_device_map.values()), {torch.cuda.current_device()})
|
|
|
|
for param in model.parameters():
|
|
param.requires_grad = False # freeze the model - train adapters later
|
|
if param.ndim == 1:
|
|
# cast the small parameters (e.g. layernorm) to fp32 for stability
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
# Step 2: add adapters
|
|
for _, module in model.named_modules():
|
|
if "OPTAttention" in repr(type(module)):
|
|
module.q_proj = LoRALayer(module.q_proj, rank=16)
|
|
module.k_proj = LoRALayer(module.k_proj, rank=16)
|
|
module.v_proj = LoRALayer(module.v_proj, rank=16)
|
|
|
|
# Step 3: dummy batch
|
|
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0)
|
|
|
|
# Step 4: Check if the gradient is not None
|
|
with torch.cuda.amp.autocast():
|
|
out = model.forward(**batch)
|
|
out.logits.norm().backward()
|
|
|
|
for module in model.modules():
|
|
if isinstance(module, LoRALayer):
|
|
self.assertTrue(module.adapter[1].weight.grad is not None)
|
|
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
|
|
elif isinstance(module, nn.Embedding):
|
|
self.assertTrue(module.weight.grad is None)
|
|
|
|
|
|
class Bnb4BitGPT2Test(Bnb4BitTest):
|
|
model_name = "openai-community/gpt2-xl"
|
|
EXPECTED_RELATIVE_DIFFERENCE = 3.3191854854152187
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@require_torch
|
|
@require_torch_gpu
|
|
@slow
|
|
class BaseSerializationTest(unittest.TestCase):
|
|
model_name = "facebook/opt-125m"
|
|
input_text = "Mars colonists' favorite meals are"
|
|
|
|
def tearDown(self):
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True):
|
|
r"""
|
|
Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default.
|
|
See ExtendedSerializationTest class for more params combinations.
|
|
"""
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
|
|
|
self.quantization_config = BitsAndBytesConfig(
|
|
load_in_4bit=True,
|
|
bnb_4bit_quant_type=quant_type,
|
|
bnb_4bit_use_double_quant=double_quant,
|
|
bnb_4bit_compute_dtype=torch.bfloat16,
|
|
)
|
|
model_0 = AutoModelForCausalLM.from_pretrained(
|
|
self.model_name,
|
|
quantization_config=self.quantization_config,
|
|
device_map=torch_device,
|
|
)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization)
|
|
|
|
config = AutoConfig.from_pretrained(tmpdirname)
|
|
self.assertTrue(hasattr(config, "quantization_config"))
|
|
|
|
model_1 = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map=torch_device)
|
|
|
|
# checking quantized linear module weight
|
|
linear = get_some_linear_layer(model_1)
|
|
self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit)
|
|
self.assertTrue(hasattr(linear.weight, "quant_state"))
|
|
self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState)
|
|
|
|
# checking memory footpring
|
|
self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2)
|
|
|
|
# Matching all parameters and their quant_state items:
|
|
d0 = dict(model_0.named_parameters())
|
|
d1 = dict(model_1.named_parameters())
|
|
self.assertTrue(d0.keys() == d1.keys())
|
|
|
|
for k in d0.keys():
|
|
self.assertTrue(d0[k].shape == d1[k].shape)
|
|
self.assertTrue(d0[k].device.type == d1[k].device.type)
|
|
self.assertTrue(d0[k].device == d1[k].device)
|
|
self.assertTrue(d0[k].dtype == d1[k].dtype)
|
|
self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device)))
|
|
|
|
if isinstance(d0[k], bnb.nn.modules.Params4bit):
|
|
for v0, v1 in zip(
|
|
d0[k].quant_state.as_dict().values(),
|
|
d1[k].quant_state.as_dict().values(),
|
|
):
|
|
if isinstance(v0, torch.Tensor):
|
|
self.assertTrue(torch.equal(v0, v1.to(v0.device)))
|
|
else:
|
|
self.assertTrue(v0 == v1)
|
|
|
|
# comparing forward() outputs
|
|
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
out_0 = model_0(**encoded_input)
|
|
out_1 = model_1(**encoded_input)
|
|
self.assertTrue(torch.equal(out_0["logits"], out_1["logits"]))
|
|
|
|
# comparing generate() outputs
|
|
encoded_input = tokenizer(self.input_text, return_tensors="pt").to(torch_device)
|
|
output_sequences_0 = model_0.generate(**encoded_input, max_new_tokens=10)
|
|
output_sequences_1 = model_1.generate(**encoded_input, max_new_tokens=10)
|
|
|
|
def _decode(token):
|
|
return tokenizer.decode(token, skip_special_tokens=True)
|
|
|
|
self.assertEqual(
|
|
[_decode(x) for x in output_sequences_0],
|
|
[_decode(x) for x in output_sequences_1],
|
|
)
|
|
|
|
|
|
class ExtendedSerializationTest(BaseSerializationTest):
|
|
"""
|
|
tests more combinations of parameters
|
|
"""
|
|
|
|
def test_nf4_single_unsafe(self):
|
|
self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False)
|
|
|
|
def test_nf4_single_safe(self):
|
|
self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True)
|
|
|
|
def test_nf4_double_unsafe(self):
|
|
self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False)
|
|
|
|
# nf4 double safetensors quantization is tested in test_serialization() method from the parent class
|
|
|
|
def test_fp4_single_unsafe(self):
|
|
self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False)
|
|
|
|
def test_fp4_single_safe(self):
|
|
self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True)
|
|
|
|
def test_fp4_double_unsafe(self):
|
|
self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False)
|
|
|
|
def test_fp4_double_safe(self):
|
|
self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True)
|
|
|
|
|
|
class BloomSerializationTest(BaseSerializationTest):
|
|
"""
|
|
default BaseSerializationTest config tested with Bloom family model
|
|
"""
|
|
|
|
model_name = "bigscience/bloom-560m"
|
|
|
|
|
|
class GPTSerializationTest(BaseSerializationTest):
|
|
"""
|
|
default BaseSerializationTest config tested with GPT family model
|
|
"""
|
|
|
|
model_name = "openai-community/gpt2-xl"
|
|
|
|
|
|
@require_bitsandbytes
|
|
@require_accelerate
|
|
@require_torch_gpu
|
|
@slow
|
|
class Bnb4BitTestBasicConfigTest(unittest.TestCase):
|
|
def test_load_in_4_and_8_bit_fails(self):
|
|
with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"):
|
|
AutoModelForCausalLM.from_pretrained("facebook/opt-125m", load_in_4bit=True, load_in_8bit=True)
|
|
|
|
def test_set_load_in_8_bit(self):
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
|
with self.assertRaisesRegex(ValueError, "load_in_4bit and load_in_8bit are both True"):
|
|
quantization_config.load_in_8bit = True
|