transformers/docs/source/en/model_doc/seggpt.md

4.0 KiB

SegGPT

Overview

The SegGPT model was proposed in SegGPT: Segmenting Everything In Context by Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, Tiejun Huang. SegGPT employs a decoder-only Transformer that can generate a segmentation mask given an input image, a prompt image and its corresponding prompt mask. The model achieves remarkable one-shot results with 56.1 mIoU on COCO-20 and 85.6 mIoU on FSS-1000.

The abstract from the paper is the following:

We present SegGPT, a generalist model for segmenting everything in context. We unify various segmentation tasks into a generalist in-context learning framework that accommodates different kinds of segmentation data by transforming them into the same format of images. The training of SegGPT is formulated as an in-context coloring problem with random color mapping for each data sample. The objective is to accomplish diverse tasks according to the context, rather than relying on specific colors. After training, SegGPT can perform arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text. SegGPT is evaluated on a broad range of tasks, including few-shot semantic segmentation, video object segmentation, semantic segmentation, and panoptic segmentation. Our results show strong capabilities in segmenting in-domain and out-of

Tips:

  • One can use [SegGptImageProcessor] to prepare image input, prompt and mask to the model.
  • It's highly advisable to pass num_labels (not considering background) during preprocessing and postprocessing with [SegGptImageProcessor] for your use case.
  • When doing inference with [SegGptForImageSegmentation] if your batch_size is greater than 1 you can use feature ensemble across your images by passing feature_ensemble=True in the forward method.

Here's how to use the model for one-shot semantic segmentation:

import torch
from datasets import load_dataset
from transformers import SegGptImageProcessor, SegGptForImageSegmentation

checkpoint = "BAAI/seggpt-vit-large"
image_processor = SegGptImageProcessor.from_pretrained(checkpoint)
model = SegGptForImageSegmentation.from_pretrained(checkpoint)

dataset_id = "EduardoPacheco/FoodSeg103"
ds = load_dataset(dataset_id, split="train")
# Number of labels in FoodSeg103 (not including background)
num_labels = 103

image_input = ds[4]["image"]
ground_truth = ds[4]["label"]
image_prompt = ds[29]["image"]
mask_prompt = ds[29]["label"]

inputs = image_processor(
    images=image_input, 
    prompt_images=image_prompt,
    prompt_masks=mask_prompt, 
    num_labels=num_labels,
    return_tensors="pt"
)

with torch.no_grad():
    outputs = model(**inputs)

target_sizes = [image_input.size[::-1]]
mask = image_processor.post_process_semantic_segmentation(outputs, target_sizes, num_labels=num_labels)[0]

This model was contributed by EduardoPacheco. The original code can be found here.

SegGptConfig

autodoc SegGptConfig

SegGptImageProcessor

autodoc SegGptImageProcessor - preprocess - post_process_semantic_segmentation

SegGptModel

autodoc SegGptModel - forward

SegGptForImageSegmentation

autodoc SegGptForImageSegmentation - forward