436 lines
18 KiB
Python
436 lines
18 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a
|
|
text file or a dataset.
|
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
|
|
https://huggingface.co/models?filter=fill-mask
|
|
"""
|
|
# You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments.
|
|
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
import sys
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
from datasets import Dataset, load_dataset
|
|
|
|
import transformers
|
|
from transformers import (
|
|
CONFIG_MAPPING,
|
|
MODEL_FOR_MASKED_LM_MAPPING,
|
|
AutoConfig,
|
|
AutoModelForMaskedLM,
|
|
AutoTokenizer,
|
|
DataCollatorForWholeWordMask,
|
|
HfArgumentParser,
|
|
Trainer,
|
|
TrainingArguments,
|
|
set_seed,
|
|
)
|
|
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
|
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
"""
|
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
|
"""
|
|
|
|
model_name_or_path: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
|
|
)
|
|
},
|
|
)
|
|
model_type: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
|
|
)
|
|
config_overrides: Optional[str] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"Override some existing default config settings when a model is trained from scratch. Example: "
|
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
|
)
|
|
},
|
|
)
|
|
config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
|
)
|
|
tokenizer_name: Optional[str] = field(
|
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
|
)
|
|
cache_dir: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
|
)
|
|
use_fast_tokenizer: bool = field(
|
|
default=True,
|
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
|
)
|
|
model_revision: str = field(
|
|
default="main",
|
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
|
)
|
|
use_auth_token: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
|
|
"with private models)."
|
|
)
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
|
|
raise ValueError(
|
|
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class DataTrainingArguments:
|
|
"""
|
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
|
"""
|
|
|
|
dataset_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
|
)
|
|
dataset_config_name: Optional[str] = field(
|
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
|
)
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
|
|
validation_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
|
|
)
|
|
train_ref_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input train ref data file for whole word masking in Chinese."},
|
|
)
|
|
validation_ref_file: Optional[str] = field(
|
|
default=None,
|
|
metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."},
|
|
)
|
|
overwrite_cache: bool = field(
|
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
|
)
|
|
validation_split_percentage: Optional[int] = field(
|
|
default=5,
|
|
metadata={
|
|
"help": "The percentage of the train set used as validation set in case there's no validation split"
|
|
},
|
|
)
|
|
max_seq_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={
|
|
"help": (
|
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
|
"than this will be truncated. Default to the max input length of the model."
|
|
)
|
|
},
|
|
)
|
|
preprocessing_num_workers: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The number of processes to use for the preprocessing."},
|
|
)
|
|
mlm_probability: float = field(
|
|
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
|
|
)
|
|
pad_to_max_length: bool = field(
|
|
default=False,
|
|
metadata={
|
|
"help": (
|
|
"Whether to pad all samples to `max_seq_length`. "
|
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
|
)
|
|
},
|
|
)
|
|
|
|
def __post_init__(self):
|
|
if self.train_file is not None:
|
|
extension = self.train_file.split(".")[-1]
|
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
|
|
if self.validation_file is not None:
|
|
extension = self.validation_file.split(".")[-1]
|
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
|
|
|
|
|
|
def add_chinese_references(dataset, ref_file):
|
|
with open(ref_file, "r", encoding="utf-8") as f:
|
|
refs = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
|
assert len(dataset) == len(refs)
|
|
|
|
dataset_dict = {c: dataset[c] for c in dataset.column_names}
|
|
dataset_dict["chinese_ref"] = refs
|
|
return Dataset.from_dict(dataset_dict)
|
|
|
|
|
|
def main():
|
|
# See all possible arguments in src/transformers/training_args.py
|
|
# or by passing the --help flag to this script.
|
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
|
# If we pass only one argument to the script and it's the path to a json file,
|
|
# let's parse it to get our arguments.
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
|
else:
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
|
|
# Detecting last checkpoint.
|
|
last_checkpoint = None
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
|
raise ValueError(
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
|
"Use --overwrite_output_dir to overcome."
|
|
)
|
|
elif last_checkpoint is not None:
|
|
logger.info(
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
|
)
|
|
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
handlers=[logging.StreamHandler(sys.stdout)],
|
|
)
|
|
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
|
|
|
|
# Log on each process the small summary:
|
|
logger.warning(
|
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
|
)
|
|
# Set the verbosity to info of the Transformers logger (on main process only):
|
|
if is_main_process(training_args.local_rank):
|
|
transformers.utils.logging.set_verbosity_info()
|
|
transformers.utils.logging.enable_default_handler()
|
|
transformers.utils.logging.enable_explicit_format()
|
|
logger.info("Training/evaluation parameters %s", training_args)
|
|
|
|
# Set seed before initializing model.
|
|
set_seed(training_args.seed)
|
|
|
|
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
|
|
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
|
|
# (the dataset will be downloaded automatically from the datasets Hub).
|
|
#
|
|
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
|
|
# 'text' is found. You can easily tweak this behavior (see below).
|
|
#
|
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
|
# download the dataset.
|
|
if data_args.dataset_name is not None:
|
|
# Downloading and loading a dataset from the hub.
|
|
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
|
|
if "validation" not in datasets.keys():
|
|
datasets["validation"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"train[:{data_args.validation_split_percentage}%]",
|
|
)
|
|
datasets["train"] = load_dataset(
|
|
data_args.dataset_name,
|
|
data_args.dataset_config_name,
|
|
split=f"train[{data_args.validation_split_percentage}%:]",
|
|
)
|
|
else:
|
|
data_files = {}
|
|
if data_args.train_file is not None:
|
|
data_files["train"] = data_args.train_file
|
|
extension = data_args.train_file.split(".")[-1]
|
|
if data_args.validation_file is not None:
|
|
data_files["validation"] = data_args.validation_file
|
|
extension = data_args.validation_file.split(".")[-1]
|
|
if extension == "txt":
|
|
extension = "text"
|
|
datasets = load_dataset(extension, data_files=data_files)
|
|
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
|
|
# https://huggingface.co/docs/datasets/loading_datasets.
|
|
|
|
# Load pretrained model and tokenizer
|
|
#
|
|
# Distributed training:
|
|
# The .from_pretrained methods guarantee that only one local process can concurrently
|
|
# download model & vocab.
|
|
config_kwargs = {
|
|
"cache_dir": model_args.cache_dir,
|
|
"revision": model_args.model_revision,
|
|
"use_auth_token": True if model_args.use_auth_token else None,
|
|
}
|
|
if model_args.config_name:
|
|
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
|
elif model_args.model_name_or_path:
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
|
else:
|
|
config = CONFIG_MAPPING[model_args.model_type]()
|
|
logger.warning("You are instantiating a new config instance from scratch.")
|
|
if model_args.config_overrides is not None:
|
|
logger.info(f"Overriding config: {model_args.config_overrides}")
|
|
config.update_from_string(model_args.config_overrides)
|
|
logger.info(f"New config: {config}")
|
|
|
|
tokenizer_kwargs = {
|
|
"cache_dir": model_args.cache_dir,
|
|
"use_fast": model_args.use_fast_tokenizer,
|
|
"revision": model_args.model_revision,
|
|
"use_auth_token": True if model_args.use_auth_token else None,
|
|
}
|
|
if model_args.tokenizer_name:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
|
|
elif model_args.model_name_or_path:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
|
|
else:
|
|
raise ValueError(
|
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
|
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
|
)
|
|
|
|
if model_args.model_name_or_path:
|
|
model = AutoModelForMaskedLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
|
config=config,
|
|
cache_dir=model_args.cache_dir,
|
|
revision=model_args.model_revision,
|
|
token=True if model_args.use_auth_token else None,
|
|
)
|
|
else:
|
|
logger.info("Training new model from scratch")
|
|
model = AutoModelForMaskedLM.from_config(config)
|
|
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
# Preprocessing the datasets.
|
|
# First we tokenize all the texts.
|
|
if training_args.do_train:
|
|
column_names = datasets["train"].column_names
|
|
else:
|
|
column_names = datasets["validation"].column_names
|
|
text_column_name = "text" if "text" in column_names else column_names[0]
|
|
|
|
padding = "max_length" if data_args.pad_to_max_length else False
|
|
|
|
def tokenize_function(examples):
|
|
# Remove empty lines
|
|
examples["text"] = [line for line in examples["text"] if len(line) > 0 and not line.isspace()]
|
|
return tokenizer(examples["text"], padding=padding, truncation=True, max_length=data_args.max_seq_length)
|
|
|
|
tokenized_datasets = datasets.map(
|
|
tokenize_function,
|
|
batched=True,
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
remove_columns=[text_column_name],
|
|
load_from_cache_file=not data_args.overwrite_cache,
|
|
)
|
|
|
|
# Add the chinese references if provided
|
|
if data_args.train_ref_file is not None:
|
|
tokenized_datasets["train"] = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file)
|
|
if data_args.validation_ref_file is not None:
|
|
tokenized_datasets["validation"] = add_chinese_references(
|
|
tokenized_datasets["validation"], data_args.validation_ref_file
|
|
)
|
|
# If we have ref files, need to avoid it removed by trainer
|
|
has_ref = data_args.train_ref_file or data_args.validation_ref_file
|
|
if has_ref:
|
|
training_args.remove_unused_columns = False
|
|
|
|
# Data collator
|
|
# This one will take care of randomly masking the tokens.
|
|
data_collator = DataCollatorForWholeWordMask(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability)
|
|
|
|
# Initialize our Trainer
|
|
trainer = Trainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=tokenized_datasets["train"] if training_args.do_train else None,
|
|
eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None,
|
|
tokenizer=tokenizer,
|
|
data_collator=data_collator,
|
|
)
|
|
|
|
# Training
|
|
if training_args.do_train:
|
|
if last_checkpoint is not None:
|
|
checkpoint = last_checkpoint
|
|
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
|
|
checkpoint = model_args.model_name_or_path
|
|
else:
|
|
checkpoint = None
|
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
|
|
|
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_train_file, "w") as writer:
|
|
logger.info("***** Train results *****")
|
|
for key, value in sorted(train_result.metrics.items()):
|
|
logger.info(f" {key} = {value}")
|
|
writer.write(f"{key} = {value}\n")
|
|
|
|
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
|
|
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
|
|
|
|
# Evaluation
|
|
results = {}
|
|
if training_args.do_eval:
|
|
logger.info("*** Evaluate ***")
|
|
|
|
eval_output = trainer.evaluate()
|
|
|
|
perplexity = math.exp(eval_output["eval_loss"])
|
|
results["perplexity"] = perplexity
|
|
|
|
output_eval_file = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt")
|
|
if trainer.is_world_process_zero():
|
|
with open(output_eval_file, "w") as writer:
|
|
logger.info("***** Eval results *****")
|
|
for key, value in sorted(results.items()):
|
|
logger.info(f" {key} = {value}")
|
|
writer.write(f"{key} = {value}\n")
|
|
|
|
return results
|
|
|
|
|
|
def _mp_fn(index):
|
|
# For xla_spawn (TPUs)
|
|
main()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|