transformers/tests/models/visual_bert/test_modeling_visual_bert.py

709 lines
29 KiB
Python

# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VisualBERT model."""
import copy
import unittest
from transformers import VisualBertConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForRegionToPhraseAlignment,
VisualBertForVisualReasoning,
VisualBertModel,
)
class VisualBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
visual_seq_length=5,
is_training=True,
use_attention_mask=True,
use_visual_attention_mask=True,
use_token_type_ids=True,
use_visual_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
visual_embedding_dim=20,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.visual_seq_length = visual_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_visual_attention_mask = use_visual_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_visual_token_type_ids = use_visual_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.visual_embedding_dim = visual_embedding_dim
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def get_config(self):
return VisualBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
visual_embedding_dim=self.visual_embedding_dim,
num_labels=self.num_labels,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_common(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
visual_embeds = floats_tensor([self.batch_size, self.visual_seq_length, self.visual_embedding_dim])
attention_mask = None
if self.use_attention_mask:
attention_mask = torch.ones((self.batch_size, self.seq_length), dtype=torch.long, device=torch_device)
visual_attention_mask = None
if self.use_visual_attention_mask:
visual_attention_mask = torch.ones(
(self.batch_size, self.visual_seq_length), dtype=torch.long, device=torch_device
)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
visual_token_type_ids = None
if self.use_visual_token_type_ids:
visual_token_type_ids = ids_tensor([self.batch_size, self.visual_seq_length], self.type_vocab_size)
config = self.get_config()
return config, {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"visual_embeds": visual_embeds,
"visual_token_type_ids": visual_token_type_ids,
"visual_attention_mask": visual_attention_mask,
}
def prepare_config_and_inputs_for_pretraining(self):
masked_lm_labels = None
sentence_image_labels = None
if self.use_labels:
masked_lm_labels = ids_tensor([self.batch_size, self.seq_length + self.visual_seq_length], self.vocab_size)
sentence_image_labels = ids_tensor(
[self.batch_size],
self.type_sequence_label_size,
)
config, input_dict = self.prepare_config_and_inputs_for_common()
input_dict.update({"labels": masked_lm_labels, "sentence_image_labels": sentence_image_labels})
return config, input_dict
def prepare_config_and_inputs_for_multiple_choice(self):
input_ids = ids_tensor([self.batch_size, self.num_choices, self.seq_length], self.vocab_size)
visual_embeds = floats_tensor(
[self.batch_size, self.num_choices, self.visual_seq_length, self.visual_embedding_dim]
)
attention_mask = None
if self.use_attention_mask:
attention_mask = torch.ones(
(self.batch_size, self.num_choices, self.seq_length), dtype=torch.long, device=torch_device
)
visual_attention_mask = None
if self.use_visual_attention_mask:
visual_attention_mask = torch.ones(
(self.batch_size, self.num_choices, self.visual_seq_length), dtype=torch.long, device=torch_device
)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.num_choices, self.seq_length], self.type_vocab_size)
visual_token_type_ids = None
if self.use_visual_token_type_ids:
visual_token_type_ids = ids_tensor(
[self.batch_size, self.num_choices, self.visual_seq_length], self.type_vocab_size
)
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": attention_mask,
"visual_embeds": visual_embeds,
"visual_token_type_ids": visual_token_type_ids,
"visual_attention_mask": visual_attention_mask,
"labels": labels,
}
def prepare_config_and_inputs_for_vqa(self):
vqa_labels = None
if self.use_labels:
vqa_labels = floats_tensor([self.batch_size, self.num_labels])
config, input_dict = self.prepare_config_and_inputs_for_common()
input_dict.update({"labels": vqa_labels})
return config, input_dict
def prepare_config_and_inputs_for_nlvr(self):
nlvr_labels = None
if self.use_labels:
nlvr_labels = ids_tensor([self.batch_size], self.num_labels)
config, input_dict = self.prepare_config_and_inputs_for_common()
input_dict.update({"labels": nlvr_labels})
return config, input_dict
def prepare_config_and_inputs_for_flickr(self):
region_to_phrase_position = torch.cat(
(
ids_tensor([self.batch_size, self.seq_length], self.visual_seq_length),
torch.ones(self.batch_size, self.visual_seq_length, dtype=torch.long, device=torch_device) * -1,
),
dim=-1,
)
flickr_labels = None
if self.use_labels:
flickr_labels = floats_tensor(
[self.batch_size, self.seq_length + self.visual_seq_length, self.visual_seq_length]
)
config, input_dict = self.prepare_config_and_inputs_for_common()
input_dict.update({"region_to_phrase_position": region_to_phrase_position, "labels": flickr_labels})
return config, input_dict
def create_and_check_model(self, config, input_dict):
model = VisualBertModel(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.seq_length + self.visual_seq_length, self.hidden_size),
)
def create_and_check_for_pretraining(self, config, input_dict):
model = VisualBertForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(
result.prediction_logits.shape,
(self.batch_size, self.seq_length + self.visual_seq_length, self.vocab_size),
)
def create_and_check_for_vqa(self, config, input_dict):
model = VisualBertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(self, config, input_dict):
model = VisualBertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_nlvr(self, config, input_dict):
model = VisualBertForVisualReasoning(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_flickr(self, config, input_dict):
model = VisualBertForRegionToPhraseAlignment(config=config)
model.to(torch_device)
model.eval()
result = model(**input_dict)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.seq_length + self.visual_seq_length, self.visual_seq_length)
)
@require_torch
class VisualBertModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
VisualBertModel,
VisualBertForMultipleChoice,
VisualBertForVisualReasoning,
VisualBertForRegionToPhraseAlignment,
VisualBertForQuestionAnswering,
VisualBertForPreTraining,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = {"feature-extraction": VisualBertModel} if is_torch_available() else {}
test_torchscript = False
test_pruning = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class == VisualBertForMultipleChoice:
for key in inputs_dict.keys():
value = inputs_dict[key]
if isinstance(value, torch.Tensor) and value.ndim > 1:
if key != "visual_embeds":
inputs_dict[key] = (
inputs_dict[key].unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
)
else:
inputs_dict[key] = (
inputs_dict[key]
.unsqueeze(1)
.expand(-1, self.model_tester.num_choices, -1, self.model_tester.visual_embedding_dim)
.contiguous()
)
elif model_class == VisualBertForRegionToPhraseAlignment:
total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length
batch_size = self.model_tester.batch_size
inputs_dict["region_to_phrase_position"] = torch.zeros(
(batch_size, total_length),
dtype=torch.long,
device=torch_device,
)
if return_labels:
if model_class == VisualBertForMultipleChoice:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class == VisualBertForPreTraining:
total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length
batch_size = self.model_tester.batch_size
inputs_dict["labels"] = torch.zeros(
(batch_size, total_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict["sentence_image_labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
# Flickr expects float labels
elif model_class == VisualBertForRegionToPhraseAlignment:
batch_size = self.model_tester.batch_size
total_length = self.model_tester.seq_length + self.model_tester.visual_seq_length
inputs_dict["labels"] = torch.ones(
(
batch_size,
total_length,
self.model_tester.visual_seq_length,
),
dtype=torch.float,
device=torch_device,
)
# VQA expects float labels
elif model_class == VisualBertForQuestionAnswering:
inputs_dict["labels"] = torch.ones(
(self.model_tester.batch_size, self.model_tester.num_labels),
dtype=torch.float,
device=torch_device,
)
elif model_class == VisualBertForVisualReasoning:
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = VisualBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=VisualBertConfig, hidden_size=37)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
visual_seq_len = getattr(self.model_tester, "visual_seq_length", None)
encoder_seq_length = (seq_len if seq_len is not None else 0) + (
visual_seq_len if visual_seq_len is not None else 0
)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
if chunk_length is not None:
self.assertListEqual(
list(self_attentions[0].shape[-4:]),
[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
)
else:
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
seq_length = seq_length * self.model_tester.chunk_length
else:
seq_length = self.model_tester.seq_length + self.model_tester.visual_seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_pretraining()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_model_for_vqa(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_vqa()
self.model_tester.create_and_check_for_vqa(*config_and_inputs)
def test_model_for_nlvr(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_nlvr()
self.model_tester.create_and_check_for_nlvr(*config_and_inputs)
def test_model_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_multiple_choice()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_model_for_flickr(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_flickr()
self.model_tester.create_and_check_for_flickr(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "uclanlp/visualbert-vqa"
model = VisualBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@require_torch
class VisualBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_vqa_coco_pre(self):
model = VisualBertForPreTraining.from_pretrained("uclanlp/visualbert-vqa-coco-pre")
input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1)
token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1)
visual_embeds = torch.ones(size=(1, 10, 2048), dtype=torch.float32) * 0.5
visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long)
attention_mask = torch.tensor([1] * 6).reshape(1, -1)
visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1)
with torch.no_grad():
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
visual_embeds=visual_embeds,
visual_attention_mask=visual_attention_mask,
visual_token_type_ids=visual_token_type_ids,
)
vocab_size = 30522
expected_shape = torch.Size((1, 16, vocab_size))
self.assertEqual(output.prediction_logits.shape, expected_shape)
expected_slice = torch.tensor(
[[[-5.1858, -5.1903, -4.9142], [-6.2214, -5.9238, -5.8381], [-6.3027, -5.9939, -5.9297]]]
)
self.assertTrue(torch.allclose(output.prediction_logits[:, :3, :3], expected_slice, atol=1e-4))
expected_shape_2 = torch.Size((1, 2))
self.assertEqual(output.seq_relationship_logits.shape, expected_shape_2)
expected_slice_2 = torch.tensor([[0.7393, 0.1754]])
self.assertTrue(torch.allclose(output.seq_relationship_logits, expected_slice_2, atol=1e-4))
@slow
def test_inference_vqa(self):
model = VisualBertForQuestionAnswering.from_pretrained("uclanlp/visualbert-vqa")
input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1)
token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1)
visual_embeds = torch.ones(size=(1, 10, 2048), dtype=torch.float32) * 0.5
visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long)
attention_mask = torch.tensor([1] * 6).reshape(1, -1)
visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1)
with torch.no_grad():
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
visual_embeds=visual_embeds,
visual_attention_mask=visual_attention_mask,
visual_token_type_ids=visual_token_type_ids,
)
# vocab_size = 30522
expected_shape = torch.Size((1, 3129))
self.assertEqual(output.logits.shape, expected_shape)
expected_slice = torch.tensor(
[[-8.9898, 3.0803, -1.8016, 2.4542, -8.3420, -2.0224, -3.3124, -4.4139, -3.1491, -3.8997]]
)
self.assertTrue(torch.allclose(output.logits[:, :10], expected_slice, atol=1e-4))
@slow
def test_inference_nlvr(self):
model = VisualBertForVisualReasoning.from_pretrained("uclanlp/visualbert-nlvr2")
input_ids = torch.tensor([1, 2, 3, 4, 5, 6], dtype=torch.long).reshape(1, -1)
token_type_ids = torch.tensor([0, 0, 0, 1, 1, 1], dtype=torch.long).reshape(1, -1)
visual_embeds = torch.ones(size=(1, 10, 1024), dtype=torch.float32) * 0.5
visual_token_type_ids = torch.ones(size=(1, 10), dtype=torch.long)
attention_mask = torch.tensor([1] * 6).reshape(1, -1)
visual_attention_mask = torch.tensor([1] * 10).reshape(1, -1)
with torch.no_grad():
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
visual_embeds=visual_embeds,
visual_attention_mask=visual_attention_mask,
visual_token_type_ids=visual_token_type_ids,
)
# vocab_size = 30522
expected_shape = torch.Size((1, 2))
self.assertEqual(output.logits.shape, expected_shape)
expected_slice = torch.tensor([[-1.1436, 0.8900]])
self.assertTrue(torch.allclose(output.logits, expected_slice, atol=1e-4))
@slow
def test_inference_vcr(self):
model = VisualBertForMultipleChoice.from_pretrained("uclanlp/visualbert-vcr")
input_ids = torch.tensor([[[1, 2, 3, 4, 5, 6] for i in range(4)]], dtype=torch.long)
attention_mask = torch.ones_like(input_ids)
token_type_ids = torch.ones_like(input_ids)
visual_embeds = torch.ones(size=(1, 4, 10, 512), dtype=torch.float32) * 0.5
visual_token_type_ids = torch.ones(size=(1, 4, 10), dtype=torch.long)
visual_attention_mask = torch.ones_like(visual_token_type_ids)
with torch.no_grad():
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
visual_embeds=visual_embeds,
visual_attention_mask=visual_attention_mask,
visual_token_type_ids=visual_token_type_ids,
)
# vocab_size = 30522
expected_shape = torch.Size((1, 4))
self.assertEqual(output.logits.shape, expected_shape)
expected_slice = torch.tensor([[-7.7697, -7.7697, -7.7697, -7.7697]])
self.assertTrue(torch.allclose(output.logits, expected_slice, atol=1e-4))