768 lines
32 KiB
Python
768 lines
32 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import unittest
|
|
|
|
from transformers import LongformerConfig, is_torch_available
|
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
|
|
|
|
from ...test_configuration_common import ConfigTester
|
|
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
|
|
from ...test_pipeline_mixin import PipelineTesterMixin
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
from transformers import (
|
|
LongformerForMaskedLM,
|
|
LongformerForMultipleChoice,
|
|
LongformerForQuestionAnswering,
|
|
LongformerForSequenceClassification,
|
|
LongformerForTokenClassification,
|
|
LongformerModel,
|
|
LongformerSelfAttention,
|
|
)
|
|
|
|
|
|
class LongformerModelTester:
|
|
def __init__(
|
|
self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
use_labels=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
type_sequence_label_size=2,
|
|
initializer_range=0.02,
|
|
num_labels=3,
|
|
num_choices=4,
|
|
scope=None,
|
|
attention_window=4,
|
|
):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.use_labels = use_labels
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.type_sequence_label_size = type_sequence_label_size
|
|
self.initializer_range = initializer_range
|
|
self.num_labels = num_labels
|
|
self.num_choices = num_choices
|
|
self.scope = scope
|
|
self.attention_window = attention_window
|
|
|
|
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
|
|
# [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention
|
|
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
|
|
# because its local attention only attends to `self.attention_window + 1` locations
|
|
# (assuming no token with global attention, otherwise the last dimension of attentions
|
|
# is x + self.attention_window + 1, where x is the number of tokens with global attention)
|
|
self.key_length = self.attention_window + 2
|
|
|
|
def prepare_config_and_inputs(self):
|
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = random_attention_mask([self.batch_size, self.seq_length])
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
sequence_labels = None
|
|
token_labels = None
|
|
choice_labels = None
|
|
if self.use_labels:
|
|
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
|
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
|
|
choice_labels = ids_tensor([self.batch_size], self.num_choices)
|
|
|
|
config = self.get_config()
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
def get_config(self):
|
|
return LongformerConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range,
|
|
attention_window=self.attention_window,
|
|
)
|
|
|
|
def get_pipeline_config(self):
|
|
config = self.get_config()
|
|
config.vocab_size = 300
|
|
return config
|
|
|
|
def create_and_check_attention_mask_determinism(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = LongformerModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
|
output_with_mask = model(input_ids, attention_mask=attention_mask)["last_hidden_state"]
|
|
output_without_mask = model(input_ids)["last_hidden_state"]
|
|
self.parent.assertTrue(torch.allclose(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], atol=1e-4))
|
|
|
|
def create_and_check_model(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = LongformerModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
|
|
result = model(input_ids, token_type_ids=token_type_ids)
|
|
result = model(input_ids)
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_model_with_global_attention_mask(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = LongformerModel(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
global_attention_mask = input_mask.clone()
|
|
global_attention_mask[:, input_mask.shape[-1] // 2] = 0
|
|
global_attention_mask = global_attention_mask.to(torch_device)
|
|
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
global_attention_mask=global_attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
)
|
|
result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
|
|
result = model(input_ids, global_attention_mask=global_attention_mask)
|
|
|
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
|
|
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
|
|
|
|
def create_and_check_for_masked_lm(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = LongformerForMaskedLM(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
|
|
|
|
def create_and_check_for_question_answering(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
model = LongformerForQuestionAnswering(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(
|
|
input_ids,
|
|
attention_mask=input_mask,
|
|
global_attention_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
start_positions=sequence_labels,
|
|
end_positions=sequence_labels,
|
|
)
|
|
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
|
|
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
|
|
|
|
def create_and_check_for_sequence_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = LongformerForSequenceClassification(config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
|
|
|
|
def create_and_check_for_token_classification(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_labels = self.num_labels
|
|
model = LongformerForTokenClassification(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
|
|
|
|
def create_and_check_for_multiple_choice(
|
|
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
):
|
|
config.num_choices = self.num_choices
|
|
model = LongformerForMultipleChoice(config=config)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
|
|
result = model(
|
|
multiple_choice_inputs_ids,
|
|
attention_mask=multiple_choice_input_mask,
|
|
global_attention_mask=multiple_choice_input_mask,
|
|
token_type_ids=multiple_choice_token_type_ids,
|
|
labels=choice_labels,
|
|
)
|
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
|
|
|
|
def prepare_config_and_inputs_for_common(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
global_attention_mask = torch.zeros_like(input_ids)
|
|
global_attention_mask[:, -1] = 1
|
|
|
|
inputs_dict = {
|
|
"input_ids": input_ids,
|
|
"token_type_ids": token_type_ids,
|
|
"attention_mask": input_mask,
|
|
"global_attention_mask": global_attention_mask,
|
|
}
|
|
return config, inputs_dict
|
|
|
|
def prepare_config_and_inputs_for_question_answering(self):
|
|
config_and_inputs = self.prepare_config_and_inputs()
|
|
(
|
|
config,
|
|
input_ids,
|
|
token_type_ids,
|
|
input_mask,
|
|
sequence_labels,
|
|
token_labels,
|
|
choice_labels,
|
|
) = config_and_inputs
|
|
|
|
# Replace sep_token_id by some random id
|
|
input_ids[input_ids == config.sep_token_id] = torch.randint(0, config.vocab_size, (1,)).item()
|
|
# Make sure there are exactly three sep_token_id
|
|
input_ids[:, -3:] = config.sep_token_id
|
|
input_mask = torch.ones_like(input_ids)
|
|
|
|
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
|
|
|
|
|
|
@require_torch
|
|
class LongformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
|
test_pruning = False # pruning is not supported
|
|
test_torchscript = False
|
|
|
|
all_model_classes = (
|
|
(
|
|
LongformerModel,
|
|
LongformerForMaskedLM,
|
|
LongformerForSequenceClassification,
|
|
LongformerForQuestionAnswering,
|
|
LongformerForTokenClassification,
|
|
LongformerForMultipleChoice,
|
|
)
|
|
if is_torch_available()
|
|
else ()
|
|
)
|
|
pipeline_model_mapping = (
|
|
{
|
|
"feature-extraction": LongformerModel,
|
|
"fill-mask": LongformerForMaskedLM,
|
|
"question-answering": LongformerForQuestionAnswering,
|
|
"text-classification": LongformerForSequenceClassification,
|
|
"token-classification": LongformerForTokenClassification,
|
|
"zero-shot": LongformerForSequenceClassification,
|
|
}
|
|
if is_torch_available()
|
|
else {}
|
|
)
|
|
|
|
# Need to use `0.6` instead of `0.5` for `test_disk_offload`
|
|
model_split_percents = [0.6, 0.7, 0.9]
|
|
|
|
# TODO: Fix the failed tests
|
|
def is_pipeline_test_to_skip(
|
|
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
|
|
):
|
|
if (
|
|
pipeline_test_casse_name == "QAPipelineTests"
|
|
and tokenizer_name is not None
|
|
and not tokenizer_name.endswith("Fast")
|
|
):
|
|
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
|
|
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
|
|
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
|
|
return True
|
|
|
|
return False
|
|
|
|
def setUp(self):
|
|
self.model_tester = LongformerModelTester(self)
|
|
self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)
|
|
|
|
def test_config(self):
|
|
self.config_tester.run_common_tests()
|
|
|
|
def test_model(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model(*config_and_inputs)
|
|
|
|
def test_model_attention_mask_determinism(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)
|
|
|
|
def test_model_global_attention_mask(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
|
|
|
|
def test_for_masked_lm(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
|
|
|
|
def test_for_question_answering(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
|
|
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
|
|
|
|
def test_for_sequence_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
|
|
|
|
def test_for_token_classification(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
|
|
|
|
def test_for_multiple_choice(self):
|
|
config_and_inputs = self.model_tester.prepare_config_and_inputs()
|
|
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
|
|
|
|
def test_retain_grad_hidden_states_attentions(self):
|
|
# longformer cannot keep gradients in attentions or hidden states
|
|
return
|
|
|
|
@unittest.skip("LongFormer calculates global attn only when attn_mask has non-zero elements")
|
|
def test_batching_equivalence(self):
|
|
return
|
|
|
|
|
|
@require_torch
|
|
@require_sentencepiece
|
|
@require_tokenizers
|
|
class LongformerModelIntegrationTest(unittest.TestCase):
|
|
def _get_hidden_states(self):
|
|
return torch.tensor(
|
|
[
|
|
[
|
|
[
|
|
4.98332758e-01,
|
|
2.69175139e00,
|
|
-7.08081422e-03,
|
|
1.04915401e00,
|
|
-1.83476661e00,
|
|
7.67220476e-01,
|
|
2.98580543e-01,
|
|
2.84803992e-02,
|
|
],
|
|
[
|
|
-7.58357372e-01,
|
|
4.20635998e-01,
|
|
-4.04739919e-02,
|
|
1.59924145e-01,
|
|
2.05135748e00,
|
|
-1.15997978e00,
|
|
5.37166397e-01,
|
|
2.62873606e-01,
|
|
],
|
|
[
|
|
-1.69438001e00,
|
|
4.17574660e-01,
|
|
-1.49196962e00,
|
|
-1.76483717e00,
|
|
-1.94566312e-01,
|
|
-1.71183858e00,
|
|
7.72903565e-01,
|
|
-1.11557056e00,
|
|
],
|
|
[
|
|
5.44028163e-01,
|
|
2.05466114e-01,
|
|
-3.63045868e-01,
|
|
2.41865062e-01,
|
|
3.20348382e-01,
|
|
-9.05611176e-01,
|
|
-1.92690727e-01,
|
|
-1.19917547e00,
|
|
],
|
|
]
|
|
],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
)
|
|
|
|
def test_diagonalize(self):
|
|
hidden_states = self._get_hidden_states()
|
|
hidden_states = hidden_states.reshape((1, 8, 4)) # set seq length = 8, hidden dim = 4
|
|
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
|
window_overlap_size = chunked_hidden_states.shape[2]
|
|
self.assertTrue(window_overlap_size == 4)
|
|
|
|
padded_hidden_states = LongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)
|
|
|
|
self.assertTrue(padded_hidden_states.shape[-1] == chunked_hidden_states.shape[-1] + window_overlap_size - 1)
|
|
|
|
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
|
|
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], atol=1e-3))
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
padded_hidden_states[0, 0, 0, 4:],
|
|
torch.zeros((3,), device=torch_device, dtype=torch.float32),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
|
|
self.assertTrue(torch.allclose(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], atol=1e-3))
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
padded_hidden_states[0, 0, -1, :3],
|
|
torch.zeros((3,), device=torch_device, dtype=torch.float32),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
def test_pad_and_transpose_last_two_dims(self):
|
|
hidden_states = self._get_hidden_states()
|
|
self.assertEqual(hidden_states.shape, (1, 4, 8))
|
|
padding = (0, 0, 0, 1)
|
|
|
|
padded_hidden_states = LongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, padding)
|
|
self.assertEqual(padded_hidden_states.shape, (1, 8, 5))
|
|
|
|
expected_added_dim = torch.zeros((5,), device=torch_device, dtype=torch.float32)
|
|
self.assertTrue(torch.allclose(expected_added_dim, padded_hidden_states[0, -1, :], atol=1e-6))
|
|
self.assertTrue(torch.allclose(hidden_states[0, -1, :], padded_hidden_states.view(1, -1)[0, 24:32], atol=1e-6))
|
|
|
|
def test_chunk(self):
|
|
hidden_states = self._get_hidden_states()
|
|
batch_size = 1
|
|
seq_length = 8
|
|
hidden_size = 4
|
|
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
|
|
|
|
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
|
|
|
# expected slices across chunk and seq length dim
|
|
expected_slice_along_seq_length = torch.tensor(
|
|
[0.4983, -0.7584, -1.6944], device=torch_device, dtype=torch.float32
|
|
)
|
|
expected_slice_along_chunk = torch.tensor(
|
|
[0.4983, -1.8348, -0.7584, 2.0514], device=torch_device, dtype=torch.float32
|
|
)
|
|
|
|
self.assertTrue(torch.allclose(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, atol=1e-3))
|
|
self.assertTrue(torch.allclose(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, atol=1e-3))
|
|
self.assertEqual(chunked_hidden_states.shape, (1, 3, 4, 4))
|
|
|
|
def test_mask_invalid_locations(self):
|
|
hidden_states = self._get_hidden_states()
|
|
|
|
batch_size = 1
|
|
seq_length = 8
|
|
hidden_size = 4
|
|
hidden_states = hidden_states.reshape((batch_size, seq_length, hidden_size))
|
|
chunked_hidden_states = LongformerSelfAttention._chunk(hidden_states, window_overlap=2)
|
|
|
|
hid_states_1 = chunked_hidden_states.clone()
|
|
LongformerSelfAttention._mask_invalid_locations(hid_states_1, 1)
|
|
self.assertTrue(torch.isinf(hid_states_1).sum().item() == 8)
|
|
|
|
hid_states_2 = chunked_hidden_states.clone()
|
|
LongformerSelfAttention._mask_invalid_locations(hid_states_2, 2)
|
|
self.assertTrue(torch.isinf(hid_states_2).sum().item() == 24)
|
|
|
|
hid_states_3 = chunked_hidden_states.clone()[:, :, :, :3]
|
|
LongformerSelfAttention._mask_invalid_locations(hid_states_3, 2)
|
|
self.assertTrue(torch.isinf(hid_states_3).sum().item() == 24)
|
|
|
|
hid_states_4 = chunked_hidden_states.clone()[:, :, 2:, :]
|
|
LongformerSelfAttention._mask_invalid_locations(hid_states_4, 2)
|
|
self.assertTrue(torch.isinf(hid_states_4).sum().item() == 12)
|
|
|
|
def test_layer_local_attn(self):
|
|
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
|
|
model.eval()
|
|
layer = model.encoder.layer[0].attention.self.to(torch_device)
|
|
hidden_states = self._get_hidden_states()
|
|
batch_size, seq_length, hidden_size = hidden_states.size()
|
|
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
|
|
attention_mask[:, -2:] = -10000
|
|
|
|
is_index_masked = attention_mask < 0
|
|
is_index_global_attn = attention_mask > 0
|
|
is_global_attn = is_index_global_attn.flatten().any().item()
|
|
|
|
output_hidden_states = layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_index_masked=is_index_masked,
|
|
is_index_global_attn=is_index_global_attn,
|
|
is_global_attn=is_global_attn,
|
|
)[0]
|
|
|
|
self.assertEqual(output_hidden_states.shape, (1, 4, 8))
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
output_hidden_states[0, 1],
|
|
torch.tensor(
|
|
[0.0019, 0.0122, -0.0171, -0.0256, -0.0300, 0.0173, -0.0115, 0.0048],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
def test_layer_global_attn(self):
|
|
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
|
|
model.eval()
|
|
layer = model.encoder.layer[0].attention.self.to(torch_device)
|
|
hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
|
|
batch_size, seq_length, hidden_size = hidden_states.size()
|
|
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
|
|
|
|
# create attn mask
|
|
attention_mask[0, -2:] = 10000.0
|
|
attention_mask[0, -1:] = -10000.0
|
|
attention_mask[1, 1:] = 10000.0
|
|
|
|
is_index_masked = attention_mask < 0
|
|
is_index_global_attn = attention_mask > 0
|
|
is_global_attn = is_index_global_attn.flatten().any().item()
|
|
|
|
output_hidden_states = layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_index_masked=is_index_masked,
|
|
is_index_global_attn=is_index_global_attn,
|
|
is_global_attn=is_global_attn,
|
|
)[0]
|
|
|
|
self.assertEqual(output_hidden_states.shape, (2, 4, 8))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
output_hidden_states[0, 2],
|
|
torch.tensor(
|
|
[-0.0651, -0.0393, 0.0309, -0.0342, -0.0066, -0.0155, -0.0209, -0.0494],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
output_hidden_states[1, -2],
|
|
torch.tensor(
|
|
[-0.0405, -0.0384, 0.0396, -0.0374, -0.0341, 0.0136, 0.0014, -0.0571],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
def test_layer_attn_probs(self):
|
|
model = LongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
|
|
model.eval()
|
|
layer = model.encoder.layer[0].attention.self.to(torch_device)
|
|
hidden_states = torch.cat([self._get_hidden_states(), self._get_hidden_states() - 0.5], dim=0)
|
|
batch_size, seq_length, hidden_size = hidden_states.size()
|
|
attention_mask = torch.zeros((batch_size, seq_length), dtype=torch.float32, device=torch_device)
|
|
|
|
# create attn mask
|
|
attention_mask[0, -2:] = 10000.0
|
|
attention_mask[0, -1:] = -10000.0
|
|
attention_mask[1, 1:] = 10000.0
|
|
|
|
is_index_masked = attention_mask < 0
|
|
is_index_global_attn = attention_mask > 0
|
|
is_global_attn = is_index_global_attn.flatten().any().item()
|
|
|
|
output_hidden_states, local_attentions, global_attentions = layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
is_index_masked=is_index_masked,
|
|
is_index_global_attn=is_index_global_attn,
|
|
is_global_attn=is_global_attn,
|
|
output_attentions=True,
|
|
)
|
|
|
|
self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
|
|
self.assertEqual(global_attentions.shape, (2, 2, 3, 4))
|
|
|
|
# All tokens with global attention have weight 0 in local attentions.
|
|
self.assertTrue(torch.all(local_attentions[0, 2:4, :, :] == 0))
|
|
self.assertTrue(torch.all(local_attentions[1, 1:4, :, :] == 0))
|
|
|
|
# The weight of all tokens with local attention must sum to 1.
|
|
self.assertTrue(torch.all(torch.abs(global_attentions[0, :, :2, :].sum(dim=-1) - 1) < 1e-6))
|
|
self.assertTrue(torch.all(torch.abs(global_attentions[1, :, :1, :].sum(dim=-1) - 1) < 1e-6))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
local_attentions[0, 0, 0, :],
|
|
torch.tensor(
|
|
[0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
local_attentions[1, 0, 0, :],
|
|
torch.tensor(
|
|
[0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
# All the global attention weights must sum to 1.
|
|
self.assertTrue(torch.all(torch.abs(global_attentions.sum(dim=-1) - 1) < 1e-6))
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
global_attentions[0, 0, 1, :],
|
|
torch.tensor(
|
|
[0.2500, 0.2500, 0.2500, 0.2500],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
global_attentions[1, 0, 0, :],
|
|
torch.tensor(
|
|
[0.2497, 0.2500, 0.2499, 0.2504],
|
|
dtype=torch.float32,
|
|
device=torch_device,
|
|
),
|
|
atol=1e-3,
|
|
)
|
|
)
|
|
|
|
@slow
|
|
def test_inference_no_head(self):
|
|
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
|
model.to(torch_device)
|
|
|
|
# 'Hello world!'
|
|
input_ids = torch.tensor([[0, 20920, 232, 328, 1437, 2]], dtype=torch.long, device=torch_device)
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
|
|
|
|
output = model(input_ids, attention_mask=attention_mask)[0]
|
|
output_without_mask = model(input_ids)[0]
|
|
|
|
expected_output_slice = torch.tensor([0.0549, 0.1087, -0.1119, -0.0368, 0.0250], device=torch_device)
|
|
self.assertTrue(torch.allclose(output[0, 0, -5:], expected_output_slice, atol=1e-4))
|
|
self.assertTrue(torch.allclose(output_without_mask[0, 0, -5:], expected_output_slice, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_no_head_long(self):
|
|
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
|
model.to(torch_device)
|
|
|
|
# 'Hello world! ' repeated 1000 times
|
|
input_ids = torch.tensor(
|
|
[[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
|
|
) # long input
|
|
|
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)
|
|
global_attention_mask = torch.zeros(input_ids.shape, dtype=torch.long, device=input_ids.device)
|
|
global_attention_mask[:, [1, 4, 21]] = 1 # Set global attention on a few random positions
|
|
|
|
output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]
|
|
|
|
expected_output_sum = torch.tensor(74585.8594, device=torch_device)
|
|
expected_output_mean = torch.tensor(0.0243, device=torch_device)
|
|
self.assertTrue(torch.allclose(output.sum(), expected_output_sum, atol=1e-4))
|
|
self.assertTrue(torch.allclose(output.mean(), expected_output_mean, atol=1e-4))
|
|
|
|
@slow
|
|
def test_inference_masked_lm_long(self):
|
|
model = LongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")
|
|
model.to(torch_device)
|
|
|
|
# 'Hello world! ' repeated 1000 times
|
|
input_ids = torch.tensor(
|
|
[[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=torch.long, device=torch_device
|
|
) # long input
|
|
input_ids = input_ids.to(torch_device)
|
|
|
|
loss, prediction_scores = model(input_ids, labels=input_ids).to_tuple()
|
|
|
|
expected_loss = torch.tensor(0.0074, device=torch_device)
|
|
expected_prediction_scores_sum = torch.tensor(-6.1048e08, device=torch_device)
|
|
expected_prediction_scores_mean = torch.tensor(-3.0348, device=torch_device)
|
|
|
|
self.assertTrue(torch.allclose(loss, expected_loss, atol=1e-4))
|
|
self.assertTrue(torch.allclose(prediction_scores.sum(), expected_prediction_scores_sum, atol=1e-4))
|
|
self.assertTrue(torch.allclose(prediction_scores.mean(), expected_prediction_scores_mean, atol=1e-4))
|