119 lines
4.2 KiB
Python
119 lines
4.2 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from huggingface_hub.utils import insecure_hashlib
|
|
|
|
from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available
|
|
from transformers.pipelines import DepthEstimationPipeline, pipeline
|
|
from transformers.testing_utils import (
|
|
is_pipeline_test,
|
|
nested_simplify,
|
|
require_tf,
|
|
require_timm,
|
|
require_torch,
|
|
require_vision,
|
|
slow,
|
|
)
|
|
|
|
from .test_pipelines_common import ANY
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
if is_vision_available():
|
|
from PIL import Image
|
|
else:
|
|
|
|
class Image:
|
|
@staticmethod
|
|
def open(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
def hashimage(image: Image) -> str:
|
|
m = insecure_hashlib.md5(image.tobytes())
|
|
return m.hexdigest()
|
|
|
|
|
|
@is_pipeline_test
|
|
@require_vision
|
|
@require_timm
|
|
@require_torch
|
|
class DepthEstimationPipelineTests(unittest.TestCase):
|
|
model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
|
|
|
|
def get_test_pipeline(self, model, tokenizer, processor):
|
|
depth_estimator = DepthEstimationPipeline(model=model, image_processor=processor)
|
|
return depth_estimator, [
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
"./tests/fixtures/tests_samples/COCO/000000039769.png",
|
|
]
|
|
|
|
def run_pipeline_test(self, depth_estimator, examples):
|
|
outputs = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png")
|
|
self.assertEqual({"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)}, outputs)
|
|
import datasets
|
|
|
|
# we use revision="refs/pr/1" until the PR is merged
|
|
# https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
|
|
dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
|
|
outputs = depth_estimator(
|
|
[
|
|
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
|
|
"http://images.cocodataset.org/val2017/000000039769.jpg",
|
|
# RGBA
|
|
dataset[0]["image"],
|
|
# LA
|
|
dataset[1]["image"],
|
|
# L
|
|
dataset[2]["image"],
|
|
]
|
|
)
|
|
self.assertEqual(
|
|
[
|
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
|
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
|
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
|
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
|
|
{"predicted_depth": ANY(torch.Tensor), "depth": ANY(Image.Image)},
|
|
],
|
|
outputs,
|
|
)
|
|
|
|
@require_tf
|
|
@unittest.skip("Depth estimation is not implemented in TF")
|
|
def test_small_model_tf(self):
|
|
pass
|
|
|
|
@slow
|
|
@require_torch
|
|
def test_large_model_pt(self):
|
|
model_id = "Intel/dpt-large"
|
|
depth_estimator = pipeline("depth-estimation", model=model_id)
|
|
outputs = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
|
|
outputs["depth"] = hashimage(outputs["depth"])
|
|
|
|
# This seems flaky.
|
|
# self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977")
|
|
self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item()), 29.304)
|
|
self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item()), 2.662)
|
|
|
|
@require_torch
|
|
def test_small_model_pt(self):
|
|
# This is highly irregular to have no small tests.
|
|
self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT")
|