87 lines
2.9 KiB
Python
87 lines
2.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
|
from transformers.testing_utils import (
|
|
is_torch_available,
|
|
require_optimum,
|
|
require_torch,
|
|
slow,
|
|
)
|
|
|
|
|
|
if is_torch_available():
|
|
import torch
|
|
|
|
|
|
@require_torch
|
|
@require_optimum
|
|
@slow
|
|
class BetterTransformerIntegrationTest(unittest.TestCase):
|
|
# refer to the full test suite in Optimum library:
|
|
# https://github.com/huggingface/optimum/tree/main/tests/bettertransformer
|
|
|
|
def test_transform_and_reverse(self):
|
|
r"""
|
|
Classic tests to simply check if the conversion has been successfull.
|
|
"""
|
|
model_id = "hf-internal-testing/tiny-random-t5"
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
|
|
|
inp = tokenizer("This is me", return_tensors="pt")
|
|
|
|
model = model.to_bettertransformer()
|
|
|
|
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
|
|
|
|
output = model.generate(**inp)
|
|
|
|
model = model.reverse_bettertransformer()
|
|
|
|
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules()))
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname)
|
|
|
|
self.assertFalse(
|
|
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules())
|
|
)
|
|
|
|
output_from_pretrained = model_reloaded.generate(**inp)
|
|
self.assertTrue(torch.allclose(output, output_from_pretrained))
|
|
|
|
def test_error_save_pretrained(self):
|
|
r"""
|
|
The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode.
|
|
All should be good if the model is reversed.
|
|
"""
|
|
model_id = "hf-internal-testing/tiny-random-t5"
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
|
|
|
model = model.to_bettertransformer()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
with self.assertRaises(ValueError):
|
|
model.save_pretrained(tmpdirname)
|
|
|
|
model = model.reverse_bettertransformer()
|
|
model.save_pretrained(tmpdirname)
|