updating examples

This commit is contained in:
thomwolf 2019-06-19 13:23:20 +02:00
parent 68ab9599ce
commit dc8e0019b7
5 changed files with 212 additions and 42 deletions

View File

@ -1288,6 +1288,29 @@ Training with these hyper-parameters gave us the following results:
loss = 0.07231863956341798
```
Here is an example on MNLI:
```bash
python -m torch.distributed.launch --nproc_per_node 8 run_classifier.py --bert_model bert-large-uncased-whole-word-masking --task_name mnli --do_train --do_eval --do_lower_case --data_dir /datadrive/bert_data/glue_data//MNLI/ --max_seq_length 128 --train_batch_size 8 --learning_rate 2e-5 --num_train_epochs 3.0 --output_dir ../models/wwm-uncased-finetuned-mnli/ --overwrite_output_dir
```
```bash
***** Eval results *****
acc = 0.8679706601466992
eval_loss = 0.4911287787382479
global_step = 18408
loss = 0.04755385363816904
***** Eval results *****
acc = 0.8747965825874695
eval_loss = 0.45516540421714036
global_step = 18408
loss = 0.04755385363816904
```
This is the example of the `bert-large-uncased-whole-word-masking-finetuned-mnli` model
#### SQuAD
This example code fine-tunes BERT on the SQuAD dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB.

View File

@ -1,32 +1,108 @@
#!/usr/bin/env python3
import os
import argparse
import logging
from tqdm import trange
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
import numpy as np
from torch.utils.data import DataLoader, SequentialSampler, TensorDataset, Subset
from torch.utils.data.distributed import DistributedSampler
from torch.nn import CrossEntropyLoss, MSELoss
from pytorch_pretrained_bert import BertForSequenceClassification, BertTokenizer
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
from run_classifier_dataset_utils import processors, output_modes, convert_examples_to_features, compute_metrics
logger = logging.getLogger(__name__)
def entropy(p):
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_1d_tensor(tensor, prefix=""):
if tensor.dtype != torch.long:
logger.info(prefix + "\t".join(f"{x:.5f}" for x in tensor.cpu().data))
else:
logger.info(prefix + "\t".join(f"{x:d}" for x in tensor.cpu().data))
def print_2d_tensor(tensor):
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
print_1d_tensor(tensor[row], prefix=f"layer {row + 1}:\t")
def compute_heads_importance(args, model, eval_dataloader):
""" Example on how to use model outputs to compute:
- head attention entropy (activated by setting output_attentions=True when we created the model
- head importance scores according to http://arxiv.org/abs/1905.10650
(activated by setting keep_multihead_output=True when we created the model)
"""
for step, batch in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
batch = tuple(t.to(args.device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
# Do a forward pass
all_attentions, logits = model(input_ids, segment_ids, input_mask)
# Update head attention entropy
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach()) * input_mask.float().unsqueeze(1)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).detach()
# Update head importance scores with regards to our loss
# First backpropagate to populate the gradients
if output_mode == "classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
elif output_mode == "regression":
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), label_ids.view(-1))
loss.backward()
# Second compute importance scores according to http://arxiv.org/abs/1905.10650
multihead_outputs = model.bert.get_multihead_outputs()
for layer, mh_layer_output in enumerate(multihead_outputs):
dot = torch.einsum("bhli,bhli->bhl", [mh_layer_output.grad, mh_layer_output])
head_importance[layer] += dot.abs().sum(-1).sum(0).detach()
tot_tokens += input_mask.float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
if args.normalize_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
return attn_entropy, head_importance
def run_model():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='bert-base-uncased', help='pretrained model name or path to local checkpoint')
parser.add_argument('--model_name_or_path', type=str, default='bert-base-cased-finetuned-mrpc', help='pretrained model name or path to local checkpoint')
parser.add_argument("--task_name", type=str, default='mrpc', help="The name of the task to train.")
parser.add_argument("--data_dir", type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--output_dir", type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances.")
parser.add_argument("--overwrite_output_dir", action='store_true', help="Whether to overwrite data in output directory")
parser.add_argument("--normalize_importance", action='store_true', help="Whether to normalize importance score between 0 and 1")
parser.add_argument("--try_pruning", action='store_true', help="Whether to try to prune head until a threshold of accuracy.")
parser.add_argument("--pruning_threshold", default=0.9, type=float, help="Pruning threshold of accuracy.")
parser.add_argument("--max_seq_length", default=128, type=int, help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available")
args = parser.parse_args()
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
@ -34,21 +110,107 @@ def run_model():
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
torch.distributed.init_process_group(backend='nccl') # Initializes the distributed backend
# Setup logging
logging.basicConfig(level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
args.device, n_gpu, bool(args.local_rank != -1), args.fp16))
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, n_gpu, bool(args.local_rank != -1)))
# Set seeds
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed(args.seed)
# Prepare GLUE task
task_name = args.task_name.lower()
processor = processors[task_name]()
output_mode = output_modes[task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
# Prepare output directory
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
# Load model & tokenizer
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
tokenizer = BertTokenizer.from_pretrained(args.model_name_or_path)
model = BertForSequenceClassification.from_pretrained(args.model_name_or_path)
# Load a model with all BERTology options on:
# output_attentions => will output attention weights
# keep_multihead_output => will store gradient of attention head outputs for head importance computation
# see: http://arxiv.org/abs/1905.10650
model = BertForSequenceClassification.from_pretrained(args.model_name_or_path,
num_labels=num_labels,
output_attentions=True,
keep_multihead_output=True)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only one distributed process download model & vocab
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
model.eval()
# Prepare dataset for the GLUE task
eval_examples = processor.get_dev_examples(args.data_dir)
cached_eval_features_file = os.path.join(args.data_dir, 'dev_{0}_{1}_{2}'.format(
list(filter(None, args.model_name_or_path.split('/'))).pop(), str(args.max_seq_length), str(task_name)))
try:
eval_features = torch.load(cached_eval_features_file)
except:
eval_features = convert_examples_to_features(eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
if args.local_rank in [-1, 0]:
logger.info("Saving eval features to cache file %s", cached_eval_features_file)
torch.save(eval_features, cached_eval_features_file)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long if output_mode == "classification" else torch.float)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.data_subset > 0:
eval_data = Subset(eval_data, list(range(args.data_subset)))
eval_sampler = SequentialSampler(eval_data) if args.local_rank == -1 else DistributedSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.batch_size)
# Print/save training arguments
print(args)
torch.save(args, os.path.join(args.output_dir, 'run_args.bin'))
# To showcase some BERTology methods, we will compute:
# - the average entropy of each head over the dev set
# - the importance score of each head over the dev set as explained in http://arxiv.org/abs/1905.10650
n_layers, n_heads = model.bert.config.num_hidden_layers, model.bert.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
tot_tokens = 0.0
# Compute head entropy and importance score
attn_entropy, head_importance = compute_heads_importance(args, model, eval_dataloader)
# Print/save matrices
np.save(os.path.join(args.output_dir, 'attn_entropy.npy'), attn_entropy)
np.save(os.path.join(args.output_dir, 'head_importance.npy'), head_importance)
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(n_layers * n_heads, dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(head_importance.numel())
print_2d_tensor(head_ranks.view_as(head_importance))
# Do pruning if we want to
if args.try_pruning and args.pruning_threshold > 0.0 and args.pruning_threshold < 1.0:
if __name__ == '__main__':
run_model()

View File

@ -366,7 +366,7 @@ def main():
output_args_file = os.path.join(args.output_dir, 'training_args.bin')
torch.save(args, output_args_file)
else:
model = BertForSequenceClassification.from_pretrained(args.bert_model)
model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
model.to(device)

View File

@ -707,36 +707,15 @@ class BertPreTrainedModel(nn.Module):
archive_file, resolved_archive_file))
logger.info("loading configuration file {} from cache at {}".format(
config_file, resolved_config_file))
### Switching to split config/weight files configuration
# tempdir = None
# if os.path.isdir(resolved_archive_file) or from_tf:
# serialization_dir = resolved_archive_file
# else:
# # Extract archive to temp dir
# tempdir = tempfile.mkdtemp()
# logger.info("extracting archive file {} to temp dir {}".format(
# resolved_archive_file, tempdir))
# with tarfile.open(resolved_archive_file, 'r:gz') as archive:
# archive.extractall(tempdir)
# serialization_dir = tempdir
# config_file = os.path.join(serialization_dir, CONFIG_NAME)
# if not os.path.exists(config_file):
# # Backward compatibility with old naming format
# config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME)
# Load config
config = BertConfig.from_json_file(resolved_config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
# weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(resolved_archive_file, map_location='cpu')
# if tempdir:
# # Clean up temp dir
# shutil.rmtree(tempdir)
if from_tf:
# Directly load from a TensorFlow checkpoint
# weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
return load_tf_weights_in_bert(model, weights_path)
# Load from a PyTorch state_dict
old_keys = []

View File

@ -37,6 +37,9 @@ PRETRAINED_VOCAB_ARCHIVE_MAP = {
'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased-vocab.txt",
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-vocab.txt",
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-vocab.txt",
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-vocab.txt",
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-vocab.txt",
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-vocab.txt",
}
PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-uncased': 512,
@ -49,6 +52,9 @@ PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = {
'bert-base-german-cased': 512,
'bert-large-uncased-whole-word-masking': 512,
'bert-large-cased-whole-word-masking': 512,
'bert-large-uncased-whole-word-masking-finetuned-squad': 512,
'bert-large-cased-whole-word-masking-finetuned-squad': 512,
'bert-base-cased-finetuned-mrpc': 512,
}
VOCAB_NAME = 'vocab.txt'