* Init FNet

* Update config

* Fix config

* Update model classes

* Update tokenizers to use sentencepiece

* Fix errors in model

* Fix defaults in config

* Remove position embedding type completely

* Fix typo and take only real numbers

* Fix type vocab size in configuration

* Add projection layer to embeddings

* Fix position ids bug in embeddings

* Add minor changes

* Add conversion script and remove CausalLM vestiges

* Fix conversion script

* Fix conversion script

* Remove CausalLM Test

* Update checkpoint names to dummy checkpoints

* Add tokenizer mapping

* Fix modeling file and corresponding tests

* Add tokenization test file

* Add PreTraining model test

* Make style and quality

* Make tokenization base tests work

* Update docs

* Add FastTokenizer tests

* Fix fast tokenizer special tokens

* Fix style and quality

* Remove load_tf_weights vestiges

* Add FNet to  main README

* Fix configuration example indentation

* Comment tokenization slow test

* Fix style

* Add changes from review

* Fix style

* Remove bos and eos tokens from tokenizers

* Add tokenizer slow test, TPU transforms, NSP

* Add scipy check

* Add scipy availabilty check to test

* Fix tokenizer and use correct inputs

* Remove remaining TODOs

* Fix tests

* Fix tests

* Comment Fourier Test

* Uncomment Fourier Test

* Change to google checkpoint

* Add changes from review

* Fix activation function

* Fix model integration test

* Add more integration tests

* Add comparison steps to MLM integration test

* Fix style

* Add masked tokenization fix

* Improve mask tokenization fix

* Fix index docs

* Add changes from review

* Fix issue

* Fix failing import in test

* some more fixes

* correct fast tokenizer

* finalize

* make style

* Remove additional tokenization logic

* Set do_lower_case to False

* Allow keeping accents

* Fix tokenization test

* Fix FNet Tokenizer Fast

* fix tests

* make style

* Add tips to FNet docs

Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
This commit is contained in:
Gunjan Chhablani 2021-09-20 16:54:30 +05:30 committed by GitHub
parent 87d5057d86
commit d8049331dc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
22 changed files with 3321 additions and 49 deletions

View File

@ -238,6 +238,7 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FNet](https://huggingface.co/transformers/master/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.

View File

@ -260,6 +260,7 @@ conda install -c huggingface transformers
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自 Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning 发布。
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (来自 Google Research) 伴随论文 [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) 由 Sascha Rothe, Shashi Narayan, Aliaksei Severyn 发布。
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (来自 CNRS) 伴随论文 [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) 由 Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab 发布。
1. **[FNet](https://huggingface.co/transformers/master/model_doc/fnet.html)** (来自 Google Research) 伴随论文 [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) 由 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon 发布。
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (来自 CMU/Google Brain) 伴随论文 [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) 由 Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le 发布。
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (来自 OpenAI) 伴随论文 [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) 由 Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever 发布。
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (来自 EleutherAI) 随仓库 [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) 发布。作者为 Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy 发布。

View File

@ -272,6 +272,7 @@ conda install -c huggingface transformers
1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
1. **[EncoderDecoder](https://huggingface.co/transformers/model_doc/encoderdecoder.html)** (from Google Research) released with the paper [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
1. **[FlauBERT](https://huggingface.co/transformers/model_doc/flaubert.html)** (from CNRS) released with the paper [FlauBERT: Unsupervised Language Model Pre-training for French](https://arxiv.org/abs/1912.05372) by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
1. **[FNet](https://huggingface.co/transformers/master/model_doc/fnet.html)** (from Google Research) released with the paper [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
1. **[Funnel Transformer](https://huggingface.co/transformers/model_doc/funnel.html)** (from CMU/Google Brain) released with the paper [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
1. **[GPT](https://huggingface.co/transformers/model_doc/gpt.html)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
1. **[GPT Neo](https://huggingface.co/transformers/model_doc/gpt_neo.html)** (from EleutherAI) released in the repository [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.

View File

@ -185,137 +185,140 @@ Supported models
28. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
29. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
29. `FNet <https://huggingface.co/transformers/master/model_doc/fnet.html>`__ (from Google Research) released with the
paper `FNet: Mixing Tokens with Fourier Transforms <https://arxiv.org/abs/2105.03824>`__ by James Lee-Thorp, Joshua
Ainslie, Ilya Eckstein, Santiago Ontanon.
30. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
30. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
31. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
and Ilya Sutskever.
31. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
32. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
Luan, Dario Amodei** and Ilya Sutskever**.
32. :doc:`GPT-J <model_doc/gptj>` (from EleutherAI) released in the repository `kingoflolz/mesh-transformer-jax
33. :doc:`GPT-J <model_doc/gptj>` (from EleutherAI) released in the repository `kingoflolz/mesh-transformer-jax
<https://github.com/kingoflolz/mesh-transformer-jax/>`__ by Ben Wang and Aran Komatsuzaki.
33. :doc:`GPT Neo <model_doc/gpt_neo>` (from EleutherAI) released in the repository `EleutherAI/gpt-neo
34. :doc:`GPT Neo <model_doc/gpt_neo>` (from EleutherAI) released in the repository `EleutherAI/gpt-neo
<https://github.com/EleutherAI/gpt-neo>`__ by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
34. :doc:`Hubert <model_doc/hubert>` (from Facebook) released with the paper `HuBERT: Self-Supervised Speech
35. :doc:`Hubert <model_doc/hubert>` (from Facebook) released with the paper `HuBERT: Self-Supervised Speech
Representation Learning by Masked Prediction of Hidden Units <https://arxiv.org/abs/2106.07447>`__ by Wei-Ning Hsu,
Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
35. :doc:`I-BERT <model_doc/ibert>` (from Berkeley) released with the paper `I-BERT: Integer-only BERT Quantization
36. :doc:`I-BERT <model_doc/ibert>` (from Berkeley) released with the paper `I-BERT: Integer-only BERT Quantization
<https://arxiv.org/abs/2101.01321>`__ by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
36. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
37. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
37. :doc:`LayoutLMv2 <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutLMv2:
38. :doc:`LayoutLMv2 <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutLMv2:
Multi-modal Pre-training for Visually-Rich Document Understanding <https://arxiv.org/abs/2012.14740>`__ by Yang Xu,
Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min
Zhang, Lidong Zhou.
38. :doc:`LayoutXLM <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutXLM:
39. :doc:`LayoutXLM <model_doc/layoutlmv2>` (from Microsoft Research Asia) released with the paper `LayoutXLM:
Multimodal Pre-training for Multilingual Visually-rich Document Understanding <https://arxiv.org/abs/2104.08836>`__
by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
39. :doc:`LED <model_doc/led>` (from AllenAI) released with the paper `Longformer: The Long-Document Transformer
40. :doc:`LED <model_doc/led>` (from AllenAI) released with the paper `Longformer: The Long-Document Transformer
<https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
40. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
41. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
41. :doc:`LUKE <model_doc/luke>` (from Studio Ousia) released with the paper `LUKE: Deep Contextualized Entity
42. :doc:`LUKE <model_doc/luke>` (from Studio Ousia) released with the paper `LUKE: Deep Contextualized Entity
Representations with Entity-aware Self-attention <https://arxiv.org/abs/2010.01057>`__ by Ikuya Yamada, Akari Asai,
Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
42. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
43. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
by Hao Tan and Mohit Bansal.
43. :doc:`M2M100 <model_doc/m2m_100>` (from Facebook) released with the paper `Beyond English-Centric Multilingual
44. :doc:`M2M100 <model_doc/m2m_100>` (from Facebook) released with the paper `Beyond English-Centric Multilingual
Machine Translation <https://arxiv.org/abs/2010.11125>`__ by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma,
Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal,
Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
44. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
45. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
Translator Team.
45. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
46. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
46. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
47. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
Multilingual Pretraining and Finetuning <https://arxiv.org/abs/2008.00401>`__ by Yuqing Tang, Chau Tran, Xian Li,
Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
47. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
48. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
48. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
49. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
49. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
50. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
Pre-training for Language Understanding <https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin,
Jianfeng Lu, Tie-Yan Liu.
50. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
51. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
51. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
52. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__ by Jingqing Zhang, Yao Zhao,
Mohammad Saleh and Peter J. Liu.
52. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
53. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
53. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
54. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
54. :doc:`RemBERT <model_doc/rembert>` (from Google Research) released with the paper `Rethinking embedding coupling in
55. :doc:`RemBERT <model_doc/rembert>` (from Google Research) released with the paper `Rethinking embedding coupling in
pre-trained language models <https://arxiv.org/pdf/2010.12821.pdf>`__ by Hyung Won Chung, Thibault Févry, Henry
Tsai, M. Johnson, Sebastian Ruder.
55. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
56. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
56. :doc:`RoFormer <model_doc/roformer>` (from ZhuiyiTechnology), released together with the paper a `RoFormer:
57. :doc:`RoFormer <model_doc/roformer>` (from ZhuiyiTechnology), released together with the paper a `RoFormer:
Enhanced Transformer with Rotary Position Embedding <https://arxiv.org/pdf/2104.09864v1.pdf>`__ by Jianlin Su and
Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
57. `SpeechEncoderDecoder <https://huggingface.co/transformers/master/model_doc/speechencoderdecoder.html>`__
58. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
58. `SpeechEncoderDecoder <https://huggingface.co/transformers/master/model_doc/speechencoderdecoder.html>`__
59. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
`fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`__ by Changhan Wang, Yun
Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
59. `SpeechToTextTransformer2 <https://huggingface.co/transformers/master/model_doc/speech_to_text_2.html>`__ (from
60. `SpeechToTextTransformer2 <https://huggingface.co/transformers/master/model_doc/speech_to_text_2.html>`__ (from
Facebook), released together with the paper `Large-Scale Self- and Semi-Supervised Learning for Speech Translation
<https://arxiv.org/abs/2104.06678>`__ by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis
Conneau.
60. :doc:`Splinter <model_doc/splinter>` (from Tel Aviv University), released together with the paper `Few-Shot
61. :doc:`Splinter <model_doc/splinter>` (from Tel Aviv University), released together with the paper `Few-Shot
Question Answering by Pretraining Span Selection <https://arxiv.org/abs/2101.00438>`__ by Ori Ram, Yuval Kirstain,
Jonathan Berant, Amir Globerson, Omer Levy.
61. :doc:`SqueezeBert <model_doc/squeezebert>` (from Berkeley) released with the paper `SqueezeBERT: What can computer
62. :doc:`SqueezeBert <model_doc/squeezebert>` (from Berkeley) released with the paper `SqueezeBERT: What can computer
vision teach NLP about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola,
Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
62. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
63. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
63. :doc:`T5v1.1 <model_doc/t5v1.1>` (from Google AI) released in the repository
64. :doc:`T5v1.1 <model_doc/t5v1.1>` (from Google AI) released in the repository
`google-research/text-to-text-transfer-transformer
<https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511>`__ by
Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi
Zhou and Wei Li and Peter J. Liu.
64. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
65. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
Pre-training <https://arxiv.org/abs/2004.02349>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller,
Francesco Piccinno and Julian Martin Eisenschlos.
65. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
66. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
66. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
67. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ by Alexey Dosovitskiy,
Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
67. :doc:`VisualBERT <model_doc/visual_bert>` (from UCLA NLP) released with the paper `VisualBERT: A Simple and
68. :doc:`VisualBERT <model_doc/visual_bert>` (from UCLA NLP) released with the paper `VisualBERT: A Simple and
Performant Baseline for Vision and Language <https://arxiv.org/pdf/1908.03557>`__ by Liunian Harold Li, Mark
Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
68. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
69. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry
Zhou, Abdelrahman Mohamed, Michael Auli.
69. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
70. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
70. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
71. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
71. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
72. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer and Veselin Stoyanov.
72. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
73. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
73. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
74. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
Cross-Lingual Representation Learning For Speech Recognition <https://arxiv.org/abs/2006.13979>`__ by Alexis
Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
@ -383,6 +386,8 @@ Flax), PyTorch, and/or TensorFlow.
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
@ -575,6 +580,7 @@ Flax), PyTorch, and/or TensorFlow.
model_doc/electra
model_doc/encoderdecoder
model_doc/flaubert
model_doc/fnet
model_doc/fsmt
model_doc/funnel
model_doc/herbert

View File

@ -0,0 +1,121 @@
..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
FNet
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The FNet model was proposed in `FNet: Mixing Tokens with Fourier Transforms <https://arxiv.org/abs/2105.03824>`__ by
James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. The model replaces the self-attention layer in a BERT
model with a fourier transform which returns only the real parts of the transform. The model is significantly faster
than the BERT model because it has fewer parameters and is more memory efficient. The model achieves about 92-97%
accuracy of BERT counterparts on GLUE benchmark, and trains much faster than the BERT model. The abstract from the
paper is the following:
*We show that Transformer encoder architectures can be sped up, with limited accuracy costs, by replacing the
self-attention sublayers with simple linear transformations that "mix" input tokens. These linear mixers, along with
standard nonlinearities in feed-forward layers, prove competent at modeling semantic relationships in several text
classification tasks. Most surprisingly, we find that replacing the self-attention sublayer in a Transformer encoder
with a standard, unparameterized Fourier Transform achieves 92-97% of the accuracy of BERT counterparts on the GLUE
benchmark, but trains 80% faster on GPUs and 70% faster on TPUs at standard 512 input lengths. At longer input lengths,
our FNet model is significantly faster: when compared to the "efficient" Transformers on the Long Range Arena
benchmark, FNet matches the accuracy of the most accurate models, while outpacing the fastest models across all
sequence lengths on GPUs (and across relatively shorter lengths on TPUs). Finally, FNet has a light memory footprint
and is particularly efficient at smaller model sizes; for a fixed speed and accuracy budget, small FNet models
outperform Transformer counterparts.*
Tips on usage:
- The model was trained without an attention mask as it is based on Fourier Transform. The model was trained with
maximum sequence length 512 which includes pad tokens. Hence, it is highly recommended to use the same maximum
sequence length for fine-tuning and inference.
This model was contributed by `gchhablani <https://huggingface.co/gchhablani>`__. The original code can be found `here
<https://github.com/google-research/google-research/tree/master/f_net>`__.
FNetConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetConfig
:members:
FNetTokenizer
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetTokenizer
:members: build_inputs_with_special_tokens, get_special_tokens_mask,
create_token_type_ids_from_sequences, save_vocabulary
FNetTokenizerFast
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetTokenizerFast
:members:
FNetModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetModel
:members: forward
FNetForPreTraining
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForPreTraining
:members: forward
FNetForMaskedLM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForMaskedLM
:members: forward
FNetForNextSentencePrediction
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForNextSentencePrediction
:members: forward
FNetForSequenceClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForSequenceClassification
:members: forward
FNetForMultipleChoice
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForMultipleChoice
:members: forward
FNetForTokenClassification
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForTokenClassification
:members: forward
FNetForQuestionAnswering
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.FNetForQuestionAnswering
:members: forward

View File

@ -209,6 +209,7 @@ _import_structure = {
"models.electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraTokenizer"],
"models.encoder_decoder": ["EncoderDecoderConfig"],
"models.flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertTokenizer"],
"models.fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig", "FNetTokenizer"],
"models.fsmt": ["FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FSMTConfig", "FSMTTokenizer"],
"models.funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig", "FunnelTokenizer"],
"models.gpt2": ["GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPT2Config", "GPT2Tokenizer"],
@ -365,6 +366,7 @@ else:
# tokenizers-backed objects
if is_tokenizers_available():
# Fast tokenizers
_import_structure["models.fnet"].append("FNetTokenizerFast")
_import_structure["models.roformer"].append("RoFormerTokenizerFast")
_import_structure["models.clip"].append("CLIPTokenizerFast")
_import_structure["models.convbert"].append("ConvBertTokenizerFast")
@ -800,6 +802,21 @@ if is_torch_available():
"FlaubertWithLMHeadModel",
]
)
_import_structure["models.fnet"].extend(
[
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
)
_import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"])
_import_structure["models.funnel"].extend(
[
@ -2000,6 +2017,7 @@ if TYPE_CHECKING:
from .models.electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraTokenizer
from .models.encoder_decoder import EncoderDecoderConfig
from .models.flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertTokenizer
from .models.fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig, FNetTokenizer
from .models.fsmt import FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP, FSMTConfig, FSMTTokenizer
from .models.funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig, FunnelTokenizer
from .models.gpt2 import GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2Config, GPT2Tokenizer
@ -2161,6 +2179,7 @@ if TYPE_CHECKING:
from .models.distilbert import DistilBertTokenizerFast
from .models.dpr import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast
from .models.electra import ElectraTokenizerFast
from .models.fnet import FNetTokenizerFast
from .models.funnel import FunnelTokenizerFast
from .models.gpt2 import GPT2TokenizerFast
from .models.herbert import HerbertTokenizerFast
@ -2505,6 +2524,19 @@ if TYPE_CHECKING:
FlaubertModel,
FlaubertWithLMHeadModel,
)
from .models.fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
from .models.fsmt import FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel
from .models.funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,

View File

@ -526,6 +526,18 @@ class AlbertConverter(SpmConverter):
)
class FNetConverter(SpmConverter):
def post_processor(self):
return processors.TemplateProcessing(
single="[CLS]:0 $A:0 [SEP]:0",
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
special_tokens=[
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
],
)
class BarthezConverter(SpmConverter):
def unk_id(self, proto):
unk_id = 3
@ -896,6 +908,7 @@ SLOW_TO_FAST_CONVERTERS = {
"DPRQuestionEncoderTokenizer": BertConverter,
"DPRContextEncoderTokenizer": BertConverter,
"ElectraTokenizer": BertConverter,
"FNetTokenizer": FNetConverter,
"FunnelTokenizer": FunnelConverter,
"GPT2Tokenizer": GPT2Converter,
"HerbertTokenizer": HerbertConverter,

View File

@ -46,6 +46,7 @@ from . import (
electra,
encoder_decoder,
flaubert,
fnet,
fsmt,
funnel,
gpt2,

View File

@ -26,6 +26,7 @@ from ...file_utils import CONFIG_NAME
CONFIG_MAPPING_NAMES = OrderedDict(
[
# Add configs here
("fnet", "FNetConfig"),
("gptj", "GPTJConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("beit", "BeitConfig"),
@ -99,6 +100,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
[
# Add archive maps here
("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
@ -164,6 +166,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("fnet", "FNet"),
("gptj", "GPT-J"),
("beit", "BeiT"),
("rembert", "RemBERT"),

View File

@ -28,6 +28,7 @@ logger = logging.get_logger(__name__)
MODEL_MAPPING_NAMES = OrderedDict(
[
# Base model mapping
("fnet", "FNetModel"),
("gptj", "GPTJModel"),
("layoutlmv2", "LayoutLMv2Model"),
("beit", "BeitModel"),
@ -97,6 +98,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
[
# Model for pre-training mapping
("fnet", "FNetForPreTraining"),
("visual_bert", "VisualBertForPreTraining"),
("layoutlm", "LayoutLMForMaskedLM"),
("retribert", "RetriBertModel"),
@ -136,6 +138,7 @@ MODEL_FOR_PRETRAINING_MAPPING_NAMES = OrderedDict(
MODEL_WITH_LM_HEAD_MAPPING_NAMES = OrderedDict(
[
# Model with LM heads mapping
("fnet", "FNetForMaskedLM"),
("gptj", "GPTJForCausalLM"),
("rembert", "RemBertForMaskedLM"),
("roformer", "RoFormerForMaskedLM"),
@ -228,6 +231,7 @@ MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
MODEL_FOR_MASKED_LM_MAPPING_NAMES = OrderedDict(
[
# Model for Masked LM mapping
("fnet", "FNetForMaskedLM"),
("rembert", "RemBertForMaskedLM"),
("roformer", "RoFormerForMaskedLM"),
("big_bird", "BigBirdForMaskedLM"),
@ -290,6 +294,7 @@ MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES = OrderedDict(
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Sequence Classification mapping
("fnet", "FNetForSequenceClassification"),
("gptj", "GPTJForSequenceClassification"),
("layoutlmv2", "LayoutLMv2ForSequenceClassification"),
("rembert", "RemBertForSequenceClassification"),
@ -334,6 +339,7 @@ MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
[
# Model for Question Answering mapping
("fnet", "FNetForQuestionAnswering"),
("layoutlmv2", "LayoutLMv2ForQuestionAnswering"),
("rembert", "RemBertForQuestionAnswering"),
("canine", "CanineForQuestionAnswering"),
@ -379,6 +385,7 @@ MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES = OrderedDict(
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
# Model for Token Classification mapping
("fnet", "FNetForTokenClassification"),
("layoutlmv2", "LayoutLMv2ForTokenClassification"),
("rembert", "RemBertForTokenClassification"),
("canine", "CanineForTokenClassification"),
@ -412,6 +419,7 @@ MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
[
# Model for Multiple Choice mapping
("fnet", "FNetForMultipleChoice"),
("rembert", "RemBertForMultipleChoice"),
("canine", "CanineForMultipleChoice"),
("roformer", "RoFormerForMultipleChoice"),
@ -440,6 +448,7 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES = OrderedDict(
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES = OrderedDict(
[
("bert", "BertForNextSentencePrediction"),
("fnet", "FNetForNextSentencePrediction"),
("megatron-bert", "MegatronBertForNextSentencePrediction"),
("mobilebert", "MobileBertForNextSentencePrediction"),
]

View File

@ -51,6 +51,7 @@ if TYPE_CHECKING:
else:
TOKENIZER_MAPPING_NAMES = OrderedDict(
[
("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)),
("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)),
("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)),
(

View File

@ -0,0 +1,73 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"],
"tokenization_fnet": ["FNetTokenizer"],
}
if is_tokenizers_available():
_import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"]
if is_torch_available():
_import_structure["modeling_fnet"] = [
"FNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
from .tokenization_fnet import FNetTokenizer
if is_tokenizers_available():
from .tokenization_fnet_fast import FNetTokenizerFast
if is_torch_available():
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)

View File

@ -0,0 +1,125 @@
# coding=utf-8
# Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" FNet model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class FNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.FNetModel`. It is used to
instantiate an FNet model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the FNet `fnet-base
<https://huggingface.co/google/fnet-base>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
vocab_size (:obj:`int`, `optional`, defaults to 32000):
Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the
:obj:`inputs_ids` passed when calling :class:`~transformers.FNetModel` or
:class:`~transformers.TFFNetModel`.
hidden_size (:obj:`int`, `optional`, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (:obj:`int`, `optional`, defaults to 12):
Number of hidden layers in the Transformer encoder.
intermediate_size (:obj:`int`, `optional`, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"selu"` and :obj:`"gelu_new"` are supported.
hidden_dropout_prob (:obj:`float`, `optional`, defaults to 0.1):
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
max_position_embeddings (:obj:`int`, `optional`, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (:obj:`int`, `optional`, defaults to 4):
The vocabulary size of the :obj:`token_type_ids` passed when calling :class:`~transformers.FNetModel` or
:class:`~transformers.TFFNetModel`.
initializer_range (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (:obj:`float`, `optional`, defaults to 1e-12):
The epsilon used by the layer normalization layers.
gradient_checkpointing (:obj:`bool`, `optional`, defaults to :obj:`False`):
If :obj:`True`, use gradient checkpointing to save memory at the expense of slower backward pass.
use_tpu_fourier_optimizations (:obj:`bool`, `optional`, defaults to :obj:`False`):
Determines whether to use TPU optimized FFTs. If :obj:`True`, the model will favor axis-wise FFTs
transforms. Set to :obj:`False` for GPU/CPU hardware, in which case n-dimensional FFTs are used.
tpu_short_seq_length (:obj:`int`, `optional`, defaults to 512):
The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT
matrix only when `use_tpu_fourier_optimizations` is set to :obj:`True` and the input sequence is shorter
than or equal to 4096 tokens.
Example::
>>> from transformers import FNetModel, FNetConfig
>>> # Initializing a FNet fnet-base style configuration
>>> configuration = FNetConfig()
>>> # Initializing a model from the fnet-base style configuration
>>> model = FNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "fnet"
def __init__(
self,
vocab_size=32000,
hidden_size=768,
num_hidden_layers=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=4,
initializer_range=0.02,
layer_norm_eps=1e-12,
use_tpu_fourier_optimizations=False,
tpu_short_seq_length=512,
pad_token_id=3,
bos_token_id=1,
eos_token_id=2,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.layer_norm_eps = layer_norm_eps
self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations
self.tpu_short_seq_length = tpu_short_seq_length

View File

@ -0,0 +1,155 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert FNet checkpoint."""
import argparse
import torch
from flax.training.checkpoints import restore_checkpoint
from transformers import FNetConfig, FNetForPreTraining
from transformers.utils import logging
logging.set_verbosity_info()
def convert_flax_checkpoint_to_pytorch(flax_checkpoint_path, fnet_config_file, save_path):
# Initialise PyTorch model
config = FNetConfig.from_json_file(fnet_config_file)
print(f"Building PyTorch model from configuration: {config}")
fnet_pretraining_model = FNetForPreTraining(config)
checkpoint_dict = restore_checkpoint(flax_checkpoint_path, None)
pretrained_model_params = checkpoint_dict["target"]
# Embeddings
# Position IDs
state_dict = fnet_pretraining_model.state_dict()
position_ids = state_dict["fnet.embeddings.position_ids"]
new_state_dict = {"fnet.embeddings.position_ids": position_ids}
# Embedding Layers
new_state_dict["fnet.embeddings.word_embeddings.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["word"]["embedding"]
)
new_state_dict["fnet.embeddings.position_embeddings.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["position"]["embedding"][0]
)
new_state_dict["fnet.embeddings.token_type_embeddings.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["type"]["embedding"]
)
new_state_dict["fnet.embeddings.projection.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["kernel"]
).T
new_state_dict["fnet.embeddings.projection.bias"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["bias"]
)
new_state_dict["fnet.embeddings.LayerNorm.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["layer_norm"]["scale"]
)
new_state_dict["fnet.embeddings.LayerNorm.bias"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["layer_norm"]["bias"]
)
# Encoder Layers
for layer in range(config.num_hidden_layers):
new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.weight"] = torch.tensor(
pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["scale"]
)
new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.bias"] = torch.tensor(
pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["bias"]
)
new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.weight"] = torch.tensor(
pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["kernel"]
).T
new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.bias"] = torch.tensor(
pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["bias"]
)
new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.weight"] = torch.tensor(
pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["kernel"]
).T
new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.bias"] = torch.tensor(
pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["bias"]
)
new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.weight"] = torch.tensor(
pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["scale"]
)
new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.bias"] = torch.tensor(
pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["bias"]
)
# Pooler Layers
new_state_dict["fnet.pooler.dense.weight"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["kernel"]).T
new_state_dict["fnet.pooler.dense.bias"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["bias"])
# Masked LM Layers
new_state_dict["cls.predictions.transform.dense.weight"] = torch.tensor(
pretrained_model_params["predictions_dense"]["kernel"]
).T
new_state_dict["cls.predictions.transform.dense.bias"] = torch.tensor(
pretrained_model_params["predictions_dense"]["bias"]
)
new_state_dict["cls.predictions.transform.LayerNorm.weight"] = torch.tensor(
pretrained_model_params["predictions_layer_norm"]["scale"]
)
new_state_dict["cls.predictions.transform.LayerNorm.bias"] = torch.tensor(
pretrained_model_params["predictions_layer_norm"]["bias"]
)
new_state_dict["cls.predictions.decoder.weight"] = torch.tensor(
pretrained_model_params["encoder"]["embedder"]["word"]["embedding"]
)
new_state_dict["cls.predictions.decoder.bias"] = torch.tensor(
pretrained_model_params["predictions_output"]["output_bias"]
)
new_state_dict["cls.predictions.bias"] = torch.tensor(pretrained_model_params["predictions_output"]["output_bias"])
# Seq Relationship Layers
new_state_dict["cls.seq_relationship.weight"] = torch.tensor(
pretrained_model_params["classification"]["output_kernel"]
)
new_state_dict["cls.seq_relationship.bias"] = torch.tensor(
pretrained_model_params["classification"]["output_bias"]
)
# Load State Dict
fnet_pretraining_model.load_state_dict(new_state_dict)
# Save PreTrained
print(f"Saving pretrained model to {save_path}")
fnet_pretraining_model.save_pretrained(save_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--flax_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--fnet_config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained FNet model. \n"
"This specifies the model architecture.",
)
parser.add_argument("--save_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
convert_flax_checkpoint_to_pytorch(args.flax_checkpoint_path, args.fnet_config_file, args.save_path)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,304 @@
# coding=utf-8
# Copyright 2021 Google Research, Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for FNet model."""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
SPIECE_UNDERLINE = ""
class FNetTokenizer(PreTrainedTokenizer):
"""
Construct an FNet tokenizer. Adapted from :class:`~transformers.AlbertTokenizer`. Based on `SentencePiece
<https://github.com/google/sentencepiece>`__. This tokenizer inherits from
:class:`~transformers.PreTrainedTokenizer` which contains most of the main methods. Users should refer to this
superclass for more information regarding those methods.
Args:
vocab_file (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to lowercase the input when tokenizing.
remove_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to keep accents when tokenizing.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
sp_model_kwargs (:obj:`dict`, `optional`):
Will be passed to the ``SentencePieceProcessor.__init__()`` method. The `Python wrapper for SentencePiece
<https://github.com/google/sentencepiece/tree/master/python>`__ can be used, among other things, to set:
- ``enable_sampling``: Enable subword regularization.
- ``nbest_size``: Sampling parameters for unigram. Invalid for BPE-Dropout.
- ``nbest_size = {0,1}``: No sampling is performed.
- ``nbest_size > 1``: samples from the nbest_size results.
- ``nbest_size < 0``: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- ``alpha``: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Attributes:
sp_model (:obj:`SentencePieceProcessor`):
The `SentencePiece` processor that is used for every conversion (string, tokens and IDs).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "token_type_ids"]
def __init__(
self,
vocab_file,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs
) -> None:
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
@property
def vocab_size(self):
return len(self.sp_model)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string."""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.PieceToId(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.sp_model.IdToPiece(index)
def convert_tokens_to_string(self, tokens):
return self.sp_model.decode(tokens)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
:obj:`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet sequence
pair mask has the following format: ::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
If :obj:`token_ids_1` is :obj:`None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)

View File

@ -0,0 +1,200 @@
# coding=utf-8
# Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for FNet model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...file_utils import is_sentencepiece_available
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
FNetTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model",
},
"tokenizer_file": {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/fnet-base": 512,
"google/fnet-large": 512,
}
SPIECE_UNDERLINE = ""
class FNetTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" FNetTokenizer (backed by HuggingFace's `tokenizers` library). Adapted from
:class:`~transformers.AlbertTokenizerFast`. Based on `Unigram
<https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models>`__. This tokenizer
inherits from :class:`~transformers.PreTrainedTokenizerFast` which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods
Args:
vocab_file (:obj:`str`):
`SentencePiece <https://github.com/google/sentencepiece>`__ file (generally has a `.spm` extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to lowercase the input when tokenizing.
remove_space (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to keep accents when tokenizing.
unk_token (:obj:`str`, `optional`, defaults to :obj:`"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (:obj:`str`, `optional`, defaults to :obj:`"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (:obj:`str`, `optional`, defaults to :obj:`"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (:obj:`str`, `optional`, defaults to :obj:`"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (:obj:`str`, `optional`, defaults to :obj:`"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "token_type_ids"]
slow_tokenizer_class = FNetTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=True,
unk_token="<unk>",
sep_token="[SEP]",
pad_token="<pad>",
cls_token="[CLS]",
mask_token="[MASK]",
**kwargs
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
self.can_save_slow_tokenizer = False if not self.vocab_file else True
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An FNet sequence has the following format:
- single sequence: ``[CLS] X [SEP]``
- pair of sequences: ``[CLS] A [SEP] B [SEP]``
Args:
token_ids_0 (:obj:`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: list of `input IDs <../glossary.html#input-ids>`__ with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet
sequence pair mask has the following format:
::
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (:obj:`List[int]`):
List of ids.
token_ids_1 (:obj:`List[int]`, `optional`):
Optional second list of IDs for sequence pairs.
Returns:
:obj:`List[int]`: List of `token type IDs <../glossary.html#token-type-ids>`_ according to the given
sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)

View File

@ -301,11 +301,18 @@ class QuestionAnsweringPipeline(Pipeline):
features = []
for span_idx in range(num_spans):
input_ids_span_idx = encoded_inputs["input_ids"][span_idx]
attention_mask_span_idx = (
encoded_inputs["attention_mask"][span_idx] if "attention_mask" in encoded_inputs else None
)
token_type_ids_span_idx = (
encoded_inputs["token_type_ids"][span_idx] if "token_type_ids" in encoded_inputs else None
)
features.append(
SquadFeatures(
input_ids=encoded_inputs["input_ids"][span_idx],
attention_mask=encoded_inputs["attention_mask"][span_idx],
token_type_ids=encoded_inputs["token_type_ids"][span_idx],
input_ids=input_ids_span_idx,
attention_mask=attention_mask_span_idx,
token_type_ids=token_type_ids_span_idx,
p_mask=p_mask[span_idx].tolist(),
encoding=encoded_inputs[span_idx],
# We don't use the rest of the values - and actually
@ -358,7 +365,10 @@ class QuestionAnsweringPipeline(Pipeline):
feature = model_outputs["features"][0]
example = model_outputs["example"]
# Ensure padded tokens & question tokens cannot belong to the set of candidate answers.
undesired_tokens = np.abs(np.array(feature.p_mask) - 1) & feature.attention_mask
undesired_tokens = np.abs(np.array(feature.p_mask) - 1)
if feature.attention_mask is not None:
undesired_tokens = undesired_tokens & feature.attention_mask
# Generate mask
undesired_tokens_mask = undesired_tokens == 0.0

View File

@ -1614,6 +1614,87 @@ class FlaubertWithLMHeadModel:
requires_backends(cls, ["torch"])
FNET_PRETRAINED_MODEL_ARCHIVE_LIST = None
class FNetForMaskedLM:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetForMultipleChoice:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetForNextSentencePrediction:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForPreTraining:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetForQuestionAnswering:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetForSequenceClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetForTokenClassification:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetLayer:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class FNetModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FNetPreTrainedModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
class FSMTForConditionalGeneration:
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])

View File

@ -128,6 +128,15 @@ class ElectraTokenizerFast:
requires_backends(cls, ["tokenizers"])
class FNetTokenizerFast:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["tokenizers"])
class FunnelTokenizerFast:
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])

559
tests/test_modeling_fnet.py Normal file
View File

@ -0,0 +1,559 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch FNet model. """
import unittest
from typing import Dict, List, Tuple
from transformers import FNetConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tokenizers, require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetModel,
FNetTokenizerFast,
)
from transformers.models.fnet.modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetBasicFourierTransform,
is_scipy_available,
)
# Override ConfigTester
class FNetConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
if self.has_text_modality:
self.parent.assertTrue(hasattr(config, "vocab_size"))
self.parent.assertTrue(hasattr(config, "hidden_size"))
self.parent.assertTrue(hasattr(config, "num_hidden_layers"))
class FNetModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
def get_config(self):
return FNetConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
tpu_short_seq_length=self.seq_length,
)
@require_torch
def create_and_check_fourier_transform(self, config):
hidden_states = floats_tensor([self.batch_size, self.seq_length, config.hidden_size])
transform = FNetBasicFourierTransform(config)
fftn_output = transform(hidden_states)
config.use_tpu_fourier_optimizations = True
if is_scipy_available():
transform = FNetBasicFourierTransform(config)
dft_output = transform(hidden_states)
config.max_position_embeddings = 4097
transform = FNetBasicFourierTransform(config)
fft_output = transform(hidden_states)
if is_scipy_available():
self.parent.assertTrue(torch.allclose(fftn_output[0][0], dft_output[0][0], atol=1e-4))
self.parent.assertTrue(torch.allclose(fft_output[0][0], dft_output[0][0], atol=1e-4))
self.parent.assertTrue(torch.allclose(fftn_output[0][0], fft_output[0][0], atol=1e-4))
def create_and_check_model(self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels):
model = FNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
labels=token_labels,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_next_sentence_prediction(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForNextSentencePrediction(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
next_sentence_label=sequence_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
model = FNetForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = FNetForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = FNetForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = FNetForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids}
return config, inputs_dict
@require_torch
class FNetModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
FNetModel,
FNetForPreTraining,
FNetForMaskedLM,
FNetForNextSentencePrediction,
FNetForMultipleChoice,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
)
if is_torch_available()
else ()
)
# Skip Tests
test_pruning = False
test_torchscript = False
test_head_masking = False
test_pruning = False
# special case for ForPreTraining model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
inputs_dict["next_sentence_label"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
# Overriden Tests
def test_attention_outputs(self):
pass
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
# tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
# dict_inputs = self._prepare_for_class(inputs_dict, model_class)
# check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
hidden_states = outputs.hidden_states[0]
hidden_states.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
def setUp(self):
self.model_tester = FNetModelTester(self)
self.config_tester = FNetConfigTester(self, config_class=FNetConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in FNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = FNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class FNetModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_for_masked_lm(self):
"""
For comparison:
1. Modify the pre-training model `__call__` to skip computing metrics and return masked_lm_output like so:
```
...
sequence_output, pooled_output = EncoderModel(
self.config, random_seed=self.random_seed, name="encoder")(
input_ids, input_mask, type_ids, deterministic=deterministic)
masked_lm_output = nn.Dense(
self.config.d_emb,
kernel_init=default_kernel_init,
name="predictions_dense")(
sequence_output)
masked_lm_output = nn.gelu(masked_lm_output)
masked_lm_output = nn.LayerNorm(
epsilon=LAYER_NORM_EPSILON, name="predictions_layer_norm")(
masked_lm_output)
masked_lm_logits = layers.OutputProjection(
kernel=self._get_embedding_table(), name="predictions_output")(
masked_lm_output)
next_sentence_logits = layers.OutputProjection(
n_out=2, kernel_init=default_kernel_init, name="classification")(
pooled_output)
return masked_lm_logits
...
```
2. Run the following:
>>> import jax.numpy as jnp
>>> import sentencepiece as spm
>>> from flax.training import checkpoints
>>> from f_net.models import PreTrainingModel
>>> from f_net.configs.pretraining import get_config, ModelArchitecture
>>> pretrained_params = checkpoints.restore_checkpoint('./f_net/f_net_checkpoint', None) # Location of original checkpoint
>>> pretrained_config = get_config()
>>> pretrained_config.model_arch = ModelArchitecture.F_NET
>>> vocab_filepath = "./f_net/c4_bpe_sentencepiece.model" # Location of the sentence piece model
>>> tokenizer = spm.SentencePieceProcessor()
>>> tokenizer.Load(vocab_filepath)
>>> with pretrained_config.unlocked():
>>> pretrained_config.vocab_size = tokenizer.GetPieceSize()
>>> tokens = jnp.array([[0, 1, 2, 3, 4, 5]])
>>> type_ids = jnp.zeros_like(tokens, dtype="i4")
>>> attention_mask = jnp.ones_like(tokens) # Dummy. This gets deleted inside the model.
>>> flax_pretraining_model = PreTrainingModel(pretrained_config)
>>> pretrained_model_params = freeze(pretrained_params['target'])
>>> flax_model_outputs = flax_pretraining_model.apply({"params": pretrained_model_params}, tokens, attention_mask, type_ids, None, None, None, None, deterministic=True)
>>> masked_lm_logits[:, :3, :3]
"""
model = FNetForMaskedLM.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
vocab_size = 32000
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-1.7819, -7.7384, -7.5002], [-3.4746, -8.5943, -7.7762], [-3.2052, -9.0771, -8.3468]]],
device=torch_device,
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@slow
@require_tokenizers
def test_inference_long_sentence(self):
model = FNetForMaskedLM.from_pretrained("google/fnet-base")
model.to(torch_device)
tokenizer = FNetTokenizerFast.from_pretrained("google/fnet-base")
inputs = tokenizer(
"the man worked as a [MASK].",
"this is his [MASK].",
return_tensors="pt",
padding="max_length",
max_length=512,
)
inputs = {k: v.to(torch_device) for k, v in inputs.items()}
logits = model(**inputs).logits
predictions_mask_1 = tokenizer.decode(logits[0, 6].topk(5).indices)
predictions_mask_2 = tokenizer.decode(logits[0, 12].topk(5).indices)
self.assertEqual(predictions_mask_1.split(" "), ["man", "child", "teacher", "woman", "model"])
self.assertEqual(predictions_mask_2.split(" "), ["work", "wife", "job", "story", "name"])
@slow
def test_inference_for_next_sentence_prediction(self):
model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
expected_shape = torch.Size((1, 2))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor([[-0.2234, -0.0226]], device=torch_device)
self.assertTrue(torch.allclose(output, expected_slice, atol=1e-4))
@slow
def test_inference_model(self):
model = FNetModel.from_pretrained("google/fnet-base")
model.to(torch_device)
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]], device=torch_device)
output = model(input_ids)[0]
expected_shape = torch.Size((1, 6, model.config.hidden_size))
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[4.1541, -0.1051, -0.1667], [-0.9144, 0.2939, -0.0086], [-0.8472, -0.7281, 0.0256]]], device=torch_device
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))

View File

@ -0,0 +1,392 @@
# coding=utf-8
# Copyright 2019 Hugging Face inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import FNetTokenizer, FNetTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_tokenizers, slow
from .test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/spiece.model")
@require_sentencepiece
@require_tokenizers
class FNetTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = FNetTokenizer
rust_tokenizer_class = FNetTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = True
test_sentencepiece_ignore_case = True
test_seq2seq = False
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = FNetTokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
def get_input_output_texts(self, tokenizer):
input_text = "this is a test"
output_text = "this is a test"
return input_text, output_text
def test_convert_token_and_id(self):
"""Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
token = "<pad>"
token_id = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "<pad>")
self.assertEqual(vocab_keys[1], "<unk>")
self.assertEqual(vocab_keys[-1], "▁eloquent")
self.assertEqual(len(vocab_keys), 30_000)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 30_000)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "I was born in 92000, and this is falsé."
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
def test_full_tokenizer(self):
tokenizer = FNetTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["", "T", "his", "▁is", "▁a", "▁test"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [13, 1, 4398, 25, 21, 1289])
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
["", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(ids, [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9])
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
"",
"<unk>",
"▁was",
"▁born",
"▁in",
"▁9",
"2000",
",",
"▁and",
"▁this",
"▁is",
"▁fal",
"s",
"<unk>",
".",
],
)
def test_sequence_builders(self):
tokenizer = FNetTokenizer(SAMPLE_VOCAB)
text = tokenizer.encode("sequence builders")
text_2 = tokenizer.encode("multi-sequence build")
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [
tokenizer.sep_token_id
]
# Overriden Tests
def test_padding(self, max_length=50):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
pad_token_id = tokenizer_p.pad_token_id
# Encode - Simple input
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", padding="longest")
input_p = tokenizer_p.encode("This is a simple input", padding=True)
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode - Pair input
input_r = tokenizer_r.encode(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
# Encode_plus - Simple input
input_r = tokenizer_r.encode_plus(
"This is a simple input", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus(
"This is a simple input", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Encode_plus - Pair input
input_r = tokenizer_r.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
input_p = tokenizer_p.encode_plus(
"This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
)
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Batch_encode_plus - Simple input
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
pad_to_max_length=True,
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
pad_to_max_length=True,
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding="longest",
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"],
max_length=max_length,
padding=True,
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"], padding="longest"
)
input_p = tokenizer_p.batch_encode_plus(
["This is a simple input 1", "This is a simple input 2"], padding=True
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Batch_encode_plus - Pair input
input_r = tokenizer_r.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
max_length=max_length,
truncation=True,
padding="max_length",
)
input_p = tokenizer_p.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
max_length=max_length,
truncation=True,
padding="max_length",
)
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
input_r = tokenizer_r.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
padding=True,
)
input_p = tokenizer_p.batch_encode_plus(
[
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
],
padding="longest",
)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus("This is a input 1")
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.encode_plus("This is a input 1")
input_p = tokenizer_r.pad(input_p)
self.assert_padded_input_match(
input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
)
# Using pad on single examples after tokenization
input_r = tokenizer_r.encode_plus("This is a input 1")
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.encode_plus("This is a input 1")
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
# Using pad after tokenization
input_r = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_r = tokenizer_r.pad(input_r)
input_p = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_p = tokenizer_r.pad(input_p)
self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
# Using pad after tokenization
input_r = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")
input_p = tokenizer_r.batch_encode_plus(
["This is a input 1", "This is a much longer input whilch should be padded"]
)
input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")
self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
def assert_batch_padded_input_match(
self,
input_r: dict,
input_p: dict,
max_length: int,
pad_token_id: int,
model_main_input_name: str = "input_ids",
):
for i_r in input_r.values():
self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
len(i_r[1]), max_length
)
self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
len(i_r[1]), max_length
)
for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)
@slow
def test_tokenizer_integration(self):
# fmt: off
expected_encoding = {'input_ids': [[4, 4616, 107, 163, 328, 14, 63, 1726, 106, 11954, 16659, 23, 83, 16688, 11427, 328, 107, 36, 11954, 16659, 23, 83, 16688, 6153, 82, 961, 16688, 3474, 16710, 1696, 2306, 16688, 10854, 2524, 3827, 561, 163, 3474, 16680, 62, 226, 2092, 16680, 379, 3474, 16660, 16680, 2436, 16667, 16671, 16680, 999, 87, 3474, 16680, 2436, 16667, 5208, 800, 16710, 68, 2018, 2959, 3037, 163, 16663, 11617, 16710, 36, 2018, 2959, 4737, 163, 16663, 16667, 16674, 16710, 91, 372, 5087, 16745, 2205, 82, 961, 3608, 38, 1770, 16745, 7984, 36, 2565, 751, 9017, 1204, 864, 218, 1244, 16680, 11954, 16659, 23, 83, 36, 14686, 23, 7619, 16678, 5], [4, 28, 532, 65, 1929, 33, 391, 16688, 3979, 9, 2565, 7849, 299, 225, 34, 2040, 305, 167, 289, 16667, 16078, 32, 1966, 181, 4626, 63, 10575, 71, 851, 1491, 36, 624, 4757, 38, 208, 8038, 16678, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3], [4, 13, 1467, 5187, 26, 2521, 4567, 16664, 372, 13, 16209, 3314, 16678, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=expected_encoding,
model_name="google/fnet-base",
revision="58e0d1f96af163dc8d0a84a2fddf4bd403e4e802",
)