* Squash all commits of modeling_detr_v7 branch into one

* Improve docs

* Fix tests

* Style

* Improve docs some more and fix most tests

* Fix slow tests of ViT, DeiT and DETR

* Improve replacement of batch norm

* Restructure timm backbone forward

* Make DetrForSegmentation support any timm backbone

* Fix name of output

* Address most comments by @LysandreJik

* Give better names for variables

* Conditional imports + timm in setup.py

* Address additional comments by @sgugger

* Make style, add require_timm and require_vision to testsé

* Remove train_backbone attribute of DetrConfig, add methods to freeze/unfreeze backbone

* Add png files to fixtures

* Fix type hint

* Add timm to workflows

* Add `BatchNorm2d` to the weight initialization

* Fix retain_grad test

* Replace model checkpoints by Facebook namespace

* Fix name of checkpoint in test

* Add user-friendly message when scipy is not available

* Address most comments by @patrickvonplaten

* Remove return_intermediate_layers attribute of DetrConfig and simplify Joiner

* Better initialization

* Scipy is necessary to get sklearn metrics

* Rename TimmBackbone to DetrTimmConvEncoder and rename DetrJoiner to DetrConvModel

* Make style

* Improve docs and add 2 community notebooks

Co-authored-by: Lysandre <lysandre.debut@reseau.eseo.fr>
This commit is contained in:
NielsRogge 2021-06-09 17:51:13 +02:00 committed by GitHub
parent d14e0af274
commit d3eacbb829
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
42 changed files with 5177 additions and 128 deletions

View File

@ -139,7 +139,7 @@ jobs:
- v0.4-{{ checksum "setup.py" }}
- run: sudo apt-get -y update && sudo apt-get install -y libsndfile1-dev
- run: pip install --upgrade pip
- run: pip install .[sklearn,torch,testing,sentencepiece,speech,vision]
- run: pip install .[sklearn,torch,testing,sentencepiece,speech,vision,timm]
- run: pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cpu.html
- save_cache:
key: v0.4-torch-{{ checksum "setup.py" }}

View File

@ -37,7 +37,7 @@ jobs:
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,vision,timm]
- name: Are GPUs recognized by our DL frameworks
run: |
@ -121,7 +121,7 @@ jobs:
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech]
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,vision,timm]
- name: Are GPUs recognized by our DL frameworks
run: |

View File

@ -33,7 +33,7 @@ jobs:
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,integrations]
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,vision,timm]
- name: Are GPUs recognized by our DL frameworks
run: |
@ -155,7 +155,7 @@ jobs:
run: |
apt -y update && apt install -y libsndfile1-dev
pip install --upgrade pip
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,integrations]
pip install .[sklearn,testing,onnxruntime,sentencepiece,speech,vision,timm]
- name: Are GPUs recognized by our DL frameworks
run: |

View File

@ -215,6 +215,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[DeBERTa](https://huggingface.co/transformers/model_doc/deberta.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeBERTa-v2](https://huggingface.co/transformers/model_doc/deberta_v2.html)** (from Microsoft) released with the paper [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
1. **[DeiT](https://huggingface.co/transformers/model_doc/deit.html)** (from Facebook) released with the paper [Training data-efficient image transformers & distillation through attention](https://arxiv.org/abs/2012.12877) by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
1. **[DETR](https://huggingface.co/transformers/model_doc/detr.html)** (from Facebook) released with the paper [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872) by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
1. **[DialoGPT](https://huggingface.co/transformers/model_doc/dialogpt.html)** (from Microsoft Research) released with the paper [DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation](https://arxiv.org/abs/1911.00536) by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
1. **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace), released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into [DistilGPT2](https://github.com/huggingface/transformers/tree/master/examples/distillation), RoBERTa into [DistilRoBERTa](https://github.com/huggingface/transformers/tree/master/examples/distillation), Multilingual BERT into [DistilmBERT](https://github.com/huggingface/transformers/tree/master/examples/distillation) and a German version of DistilBERT.
1. **[DPR](https://huggingface.co/transformers/model_doc/dpr.html)** (from Facebook) released with the paper [Dense Passage Retrieval

View File

@ -59,3 +59,5 @@ This page regroups resources around 🤗 Transformers developed by the community
| [Evaluate LUKE on CoNLL-2003, an important NER benchmark](https://github.com/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) | How to evaluate *LukeForEntitySpanClassification* on the CoNLL-2003 dataset | [Ikuya Yamada](https://github.com/ikuyamada) |[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/studio-ousia/luke/blob/master/notebooks/huggingface_conll_2003.ipynb) |
| [Evaluate BigBird-Pegasus on PubMed dataset](https://github.com/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) | How to evaluate *BigBirdPegasusForConditionalGeneration* on PubMed dataset | [Vasudev Gupta](https://github.com/vasudevgupta7) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/vasudevgupta7/bigbird/blob/main/notebooks/bigbird_pegasus_evaluation.ipynb) |
| [Speech Emotion Classification with Wav2Vec2](https://github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) | How to leverage a pretrained Wav2Vec2 model for Emotion Classification on the MEGA dataset | [Mehrdad Farahani](https://github.com/m3hrdadfi) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/m3hrdadfi/soxan/blob/main/notebooks/Emotion_recognition_in_Greek_speech_using_Wav2Vec2.ipynb) |
| [Detect objects in an image with DETR](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) | How to use a trained *DetrForObjectDetection* model to detect objects in an image and visualize attention | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/DETR_minimal_example_(with_DetrFeatureExtractor).ipynb) |
| [Fine-tune DETR on a custom object detection dataset](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) | How to fine-tune *DetrForObjectDetection* on a custom object detection dataset | [Niels Rogge](https://github.com/NielsRogge) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/DETR/Fine_tuning_DetrForObjectDetection_on_custom_dataset_(balloon).ipynb) |

View File

@ -153,128 +153,131 @@ Supported models
19. :doc:`DeiT <model_doc/deit>` (from Facebook) released with the paper `Training data-efficient image transformers &
distillation through attention <https://arxiv.org/abs/2012.12877>`__ by Hugo Touvron, Matthieu Cord, Matthijs
Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
20. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
20. :doc:`DETR <model_doc/detr>` (from Facebook) released with the paper `End-to-End Object Detection with Transformers
<https://arxiv.org/abs/2005.12872>`__ by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, Sergey Zagoruyko.
21. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`__ by Yizhe
Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
21. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
22. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__ by Victor
Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, RoBERTa into `DistilRoBERTa
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, Multilingual BERT into
`DistilmBERT <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German
version of DistilBERT.
22. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
23. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
Question Answering <https://arxiv.org/abs/2004.04906>`__ by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
23. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
24. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
Pre-training text encoders as discriminators rather than generators <https://arxiv.org/abs/2003.10555>`__ by Kevin
Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
24. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
25. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
25. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
26. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
26. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
27. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
and Ilya Sutskever.
27. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
28. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
Luan, Dario Amodei** and Ilya Sutskever**.
28. :doc:`GPT Neo <model_doc/gpt_neo>` (from EleutherAI) released in the repository `EleutherAI/gpt-neo
29. :doc:`GPT Neo <model_doc/gpt_neo>` (from EleutherAI) released in the repository `EleutherAI/gpt-neo
<https://github.com/EleutherAI/gpt-neo>`__ by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
29. :doc:`I-BERT <model_doc/ibert>` (from Berkeley) released with the paper `I-BERT: Integer-only BERT Quantization
30. :doc:`I-BERT <model_doc/ibert>` (from Berkeley) released with the paper `I-BERT: Integer-only BERT Quantization
<https://arxiv.org/abs/2101.01321>`__ by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer
30. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
31. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
31. :doc:`LED <model_doc/led>` (from AllenAI) released with the paper `Longformer: The Long-Document Transformer
32. :doc:`LED <model_doc/led>` (from AllenAI) released with the paper `Longformer: The Long-Document Transformer
<https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
32. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
33. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
33. :doc:`LUKE <model_doc/luke>` (from Studio Ousia) released with the paper `LUKE: Deep Contextualized Entity
34. :doc:`LUKE <model_doc/luke>` (from Studio Ousia) released with the paper `LUKE: Deep Contextualized Entity
Representations with Entity-aware Self-attention <https://arxiv.org/abs/2010.01057>`__ by Ikuya Yamada, Akari Asai,
Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
34. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
35. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
by Hao Tan and Mohit Bansal.
35. :doc:`M2M100 <model_doc/m2m_100>` (from Facebook) released with the paper `Beyond English-Centric Multilingual
36. :doc:`M2M100 <model_doc/m2m_100>` (from Facebook) released with the paper `Beyond English-Centric Multilingual
Machine Translation <https://arxiv.org/abs/2010.11125>`__ by by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman
Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
36. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
37. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
Translator Team.
37. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
38. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
38. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
39. :doc:`MBart-50 <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Translation with Extensible
Multilingual Pretraining and Finetuning <https://arxiv.org/abs/2008.00401>`__ by Yuqing Tang, Chau Tran, Xian Li,
Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
39. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
40. :doc:`Megatron-BERT <model_doc/megatron_bert>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
40. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
41. :doc:`Megatron-GPT2 <model_doc/megatron_gpt2>` (from NVIDIA) released with the paper `Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism <https://arxiv.org/abs/1909.08053>`__ by Mohammad
Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
41. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
42. :doc:`MPNet <model_doc/mpnet>` (from Microsoft Research) released with the paper `MPNet: Masked and Permuted
Pre-training for Language Understanding <https://arxiv.org/abs/2004.09297>`__ by Kaitao Song, Xu Tan, Tao Qin,
Jianfeng Lu, Tie-Yan Liu.
42. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
43. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
43. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
44. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
Mohammad Saleh and Peter J. Liu.
44. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
45. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
45. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
46. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
46. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
47. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
47. :doc:`RoFormer <model_doc/roformer>` (from ZhuiyiTechnology), released together with the paper a `RoFormer:
48. :doc:`RoFormer <model_doc/roformer>` (from ZhuiyiTechnology), released together with the paper a `RoFormer:
Enhanced Transformer with Rotary Position Embedding <https://arxiv.org/pdf/2104.09864v1.pdf>`__ by Jianlin Su and
Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
48. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
49. :doc:`SpeechToTextTransformer <model_doc/speech_to_text>` (from Facebook), released together with the paper
`fairseq S2T: Fast Speech-to-Text Modeling with fairseq <https://arxiv.org/abs/2010.05171>`__ by Changhan Wang, Yun
Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
49. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
50. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
Krishna, and Kurt W. Keutzer.
50. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
51. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
51. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
52. :doc:`TAPAS <model_doc/tapas>` (from Google AI) released with the paper `TAPAS: Weakly Supervised Table Parsing via
Pre-training <https://arxiv.org/abs/2004.02349>`__ by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller,
Francesco Piccinno and Julian Martin Eisenschlos.
52. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
53. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
53. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
54. :doc:`Vision Transformer (ViT) <model_doc/vit>` (from Google AI) released with the paper `An Image is Worth 16x16
Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`__ by Alexey Dosovitskiy,
Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
54. :doc:`VisualBERT <model_doc/visual_bert>` (from UCLA NLP) released with the paper `VisualBERT: A Simple and
55. :doc:`VisualBERT <model_doc/visual_bert>` (from UCLA NLP) released with the paper `VisualBERT: A Simple and
Performant Baseline for Vision and Language <https://arxiv.org/pdf/1908.03557>`__ by Liunian Harold Li, Mark
Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
55. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
56. :doc:`Wav2Vec2 <model_doc/wav2vec2>` (from Facebook AI) released with the paper `wav2vec 2.0: A Framework for
Self-Supervised Learning of Speech Representations <https://arxiv.org/abs/2006.11477>`__ by Alexei Baevski, Henry
Zhou, Abdelrahman Mohamed, Michael Auli.
56. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
57. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
57. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
58. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
58. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
59. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
Zettlemoyer and Veselin Stoyanov.
59. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
60. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
60. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
61. :doc:`XLSR-Wav2Vec2 <model_doc/xlsr_wav2vec2>` (from Facebook AI) released with the paper `Unsupervised
Cross-Lingual Representation Learning For Speech Recognition <https://arxiv.org/abs/2006.13979>`__ by Alexis
Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
@ -318,6 +321,8 @@ Flax), PyTorch, and/or TensorFlow.
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| DeBERTa | ✅ | ✅ | ✅ | ❌ | ❌ |
@ -502,6 +507,7 @@ Flax), PyTorch, and/or TensorFlow.
model_doc/deberta
model_doc/deberta_v2
model_doc/deit
model_doc/detr
model_doc/dialogpt
model_doc/distilbert
model_doc/dpr

View File

@ -0,0 +1,202 @@
..
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
DETR
-----------------------------------------------------------------------------------------------------------------------
Overview
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The DETR model was proposed in `End-to-End Object Detection with Transformers <https://arxiv.org/abs/2005.12872>`__ by
Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko. DETR
consists of a convolutional backbone followed by an encoder-decoder Transformer which can be trained end-to-end for
object detection. It greatly simplifies a lot of the complexity of models like Faster-R-CNN and Mask-R-CNN, which use
things like region proposals, non-maximum suppression procedure and anchor generation. Moreover, DETR can also be
naturally extended to perform panoptic segmentation, by simply adding a mask head on top of the decoder outputs.
The abstract from the paper is the following:
*We present a new method that views object detection as a direct set prediction problem. Our approach streamlines the
detection pipeline, effectively removing the need for many hand-designed components like a non-maximum suppression
procedure or anchor generation that explicitly encode our prior knowledge about the task. The main ingredients of the
new framework, called DEtection TRansformer or DETR, are a set-based global loss that forces unique predictions via
bipartite matching, and a transformer encoder-decoder architecture. Given a fixed small set of learned object queries,
DETR reasons about the relations of the objects and the global image context to directly output the final set of
predictions in parallel. The new model is conceptually simple and does not require a specialized library, unlike many
other modern detectors. DETR demonstrates accuracy and run-time performance on par with the well-established and
highly-optimized Faster RCNN baseline on the challenging COCO object detection dataset. Moreover, DETR can be easily
generalized to produce panoptic segmentation in a unified manner. We show that it significantly outperforms competitive
baselines.*
This model was contributed by `nielsr <https://huggingface.co/nielsr>`__. The original code can be found `here
<https://github.com/facebookresearch/detr>`__.
Here's a TLDR explaining how :class:`~transformers.DetrForObjectDetection` works:
First, an image is sent through a pre-trained convolutional backbone (in the paper, the authors use
ResNet-50/ResNet-101). Let's assume we also add a batch dimension. This means that the input to the backbone is a
tensor of shape :obj:`(batch_size, 3, height, width)`, assuming the image has 3 color channels (RGB). The CNN backbone
outputs a new lower-resolution feature map, typically of shape :obj:`(batch_size, 2048, height/32, width/32)`. This is
then projected to match the hidden dimension of the Transformer of DETR, which is :obj:`256` by default, using a
:obj:`nn.Conv2D` layer. So now, we have a tensor of shape :obj:`(batch_size, 256, height/32, width/32).` Next, the
feature map is flattened and transposed to obtain a tensor of shape :obj:`(batch_size, seq_len, d_model)` =
:obj:`(batch_size, width/32*height/32, 256)`. So a difference with NLP models is that the sequence length is actually
longer than usual, but with a smaller :obj:`d_model` (which in NLP is typically 768 or higher).
Next, this is sent through the encoder, outputting :obj:`encoder_hidden_states` of the same shape (you can consider
these as image features). Next, so-called **object queries** are sent through the decoder. This is a tensor of shape
:obj:`(batch_size, num_queries, d_model)`, with :obj:`num_queries` typically set to 100 and initialized with zeros.
These input embeddings are learnt positional encodings that the authors refer to as object queries, and similarly to
the encoder, they are added to the input of each attention layer. Each object query will look for a particular object
in the image. The decoder updates these embeddings through multiple self-attention and encoder-decoder attention layers
to output :obj:`decoder_hidden_states` of the same shape: :obj:`(batch_size, num_queries, d_model)`. Next, two heads
are added on top for object detection: a linear layer for classifying each object query into one of the objects or "no
object", and a MLP to predict bounding boxes for each query.
The model is trained using a **bipartite matching loss**: so what we actually do is compare the predicted classes +
bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N
(so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as
bounding box). The `Hungarian matching algorithm <https://en.wikipedia.org/wiki/Hungarian_algorithm>`__ is used to find
an optimal one-to-one mapping of each of the N queries to each of the N annotations. Next, standard cross-entropy (for
the classes) and a linear combination of the L1 and `generalized IoU loss <https://giou.stanford.edu/>`__ (for the
bounding boxes) are used to optimize the parameters of the model.
DETR can be naturally extended to perform panoptic segmentation (which unifies semantic segmentation and instance
segmentation). :class:`~transformers.DetrForSegmentation` adds a segmentation mask head on top of
:class:`~transformers.DetrForObjectDetection`. The mask head can be trained either jointly, or in a two steps process,
where one first trains a :class:`~transformers.DetrForObjectDetection` model to detect bounding boxes around both
"things" (instances) and "stuff" (background things like trees, roads, sky), then freeze all the weights and train only
the mask head for 25 epochs. Experimentally, these two approaches give similar results. Note that predicting boxes is
required for the training to be possible, since the Hungarian matching is computed using distances between boxes.
Tips:
- DETR uses so-called **object queries** to detect objects in an image. The number of queries determines the maximum
number of objects that can be detected in a single image, and is set to 100 by default (see parameter
:obj:`num_queries` of :class:`~transformers.DetrConfig`). Note that it's good to have some slack (in COCO, the
authors used 100, while the maximum number of objects in a COCO image is ~70).
- The decoder of DETR updates the query embeddings in parallel. This is different from language models like GPT-2,
which use autoregressive decoding instead of parallel. Hence, no causal attention mask is used.
- DETR adds position embeddings to the hidden states at each self-attention and cross-attention layer before projecting
to queries and keys. For the position embeddings of the image, one can choose between fixed sinusoidal or learned
absolute position embeddings. By default, the parameter :obj:`position_embedding_type` of
:class:`~transformers.DetrConfig` is set to :obj:`"sine"`.
- During training, the authors of DETR did find it helpful to use auxiliary losses in the decoder, especially to help
the model output the correct number of objects of each class. If you set the parameter :obj:`auxiliary_loss` of
:class:`~transformers.DetrConfig` to :obj:`True`, then prediction feedforward neural networks and Hungarian losses
are added after each decoder layer (with the FFNs sharing parameters).
- If you want to train the model in a distributed environment across multiple nodes, then one should update the
`num_boxes` variable in the `DetrLoss` class of `modeling_detr.py`. When training on multiple nodes, this should be
set to the average number of target boxes across all nodes, as can be seen in the original implementation `here
<https://github.com/facebookresearch/detr/blob/a54b77800eb8e64e3ad0d8237789fcbf2f8350c5/models/detr.py#L227-L232>`__.
- :class:`~transformers.DetrForObjectDetection` and :class:`~transformers.DetrForSegmentation` can be initialized with
any convolutional backbone available in the `timm library <https://github.com/rwightman/pytorch-image-models>`__.
Initializing with a MobileNet backbone for example can be done by setting the :obj:`backbone` attribute of
:class:`~transformers.DetrConfig` to :obj:`"tf_mobilenetv3_small_075"`, and then initializing the model with that
config.
- DETR resizes the input images such that the shortest side is at least a certain amount of pixels while the longest is
at most 1333 pixels. At training time, scale augmentation is used such that the shortest side is randomly set to at
least 480 and at most 800 pixels. At inference time, the shortest side is set to 800. One can use
:class:`~transformers.DetrFeatureExtractor` to prepare images (and optional annotations in COCO format) for the
model. Due to this resizing, images in a batch can have different sizes. DETR solves this by padding images up to the
largest size in a batch, and by creating a pixel mask that indicates which pixels are real/which are padding.
Alternatively, one can also define a custom :obj:`collate_fn` in order to batch images together, using
:meth:`~transformers.DetrFeatureExtractor.pad_and_create_pixel_mask`.
- The size of the images will determine the amount of memory being used, and will thus determine the :obj:`batch_size`.
It is advised to use a batch size of 2 per GPU. See `this Github thread
<https://github.com/facebookresearch/detr/issues/150>`__ for more info.
As a summary, consider the following table:
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Task** | **Object detection** | **Instance segmentation** | **Panoptic segmentation** |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Description** | Predicting bounding boxes and class labels around | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as |
| | objects in an image | | "stuff" (i.e. background things like trees and roads) in an image |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Model** | :class:`~transformers.DetrForObjectDetection` | :class:`~transformers.DetrForSegmentation` | :class:`~transformers.DetrForSegmentation` |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Example dataset** | COCO detection | COCO detection, | COCO panoptic |
| | | COCO panoptic | |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Format of annotations to provide to** | {image_id: int, | {image_id: int, | {file_name: str, |
| :class:`~transformers.DetrFeatureExtractor` | annotations: List[Dict]}, each Dict being a COCO | annotations: [List[Dict]] } (in case of COCO detection) | image_id: int, |
| | object annotation (containing keys "image_id", | | segments_info: List[Dict] } |
| | | or | |
| | | | and masks_path (path to directory containing PNG files of the masks) |
| | | {file_name: str, | |
| | | image_id: int, | |
| | | segments_info: List[Dict]} (in case of COCO panoptic) | |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **Postprocessing** (i.e. converting the | :meth:`~transformers.DetrFeatureExtractor.post_process` | :meth:`~transformers.DetrFeatureExtractor.post_process_segmentation` | :meth:`~transformers.DetrFeatureExtractor.post_process_segmentation`, |
| output of the model to COCO API) | | | :meth:`~transformers.DetrFeatureExtractor.post_process_panoptic` |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
| **evaluators** | :obj:`CocoEvaluator` with iou_types = “bbox” | :obj:`CocoEvaluator` with iou_types = “bbox”, “segm” | :obj:`CocoEvaluator` with iou_tupes = “bbox, “segm” |
| | | | |
| | | | :obj:`PanopticEvaluator` |
+---------------------------------------------+---------------------------------------------------------+----------------------------------------------------------------------+------------------------------------------------------------------------+
In short, one should prepare the data either in COCO detection or COCO panoptic format, then use
:class:`~transformers.DetrFeatureExtractor` to create :obj:`pixel_values`, :obj:`pixel_mask` and optional
:obj:`labels`, which can then be used to train (or fine-tune) a model. For evaluation, one should first convert the
outputs of the model using one of the postprocessing methods of :class:`~transformers.DetrFeatureExtractor`. These can
be be provided to either :obj:`CocoEvaluator` or :obj:`PanopticEvaluator`, which allow you to calculate metrics like
mean Average Precision (mAP) and Panoptic Quality (PQ). The latter objects are implemented in the `original repository
<https://github.com/facebookresearch/detr>`__. See the example notebooks for more info regarding evaluation.
DETR specific outputs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.models.detr.modeling_detr.DetrModelOutput
:members:
.. autoclass:: transformers.models.detr.modeling_detr.DetrObjectDetectionOutput
:members:
.. autoclass:: transformers.models.detr.modeling_detr.DetrSegmentationOutput
:members:
DetrConfig
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DetrConfig
:members:
DetrFeatureExtractor
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DetrFeatureExtractor
:members: __call__, pad_and_create_pixel_mask, post_process, post_process_segmentation, post_process_panoptic
DetrModel
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DetrModel
:members: forward
DetrForObjectDetection
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DetrForObjectDetection
:members: forward
DetrForSegmentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autoclass:: transformers.DetrForSegmentation
:members: forward

View File

@ -142,6 +142,7 @@ _deps = [
"tensorflow-cpu>=2.3",
"tensorflow>=2.3",
"timeout-decorator",
"timm",
"tokenizers>=0.10.1,<0.11",
"torch>=1.0",
"torchaudio",
@ -249,6 +250,7 @@ extras["integrations"] = extras["optuna"] + extras["ray"]
extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette")
extras["speech"] = deps_list("soundfile", "torchaudio")
extras["vision"] = deps_list("Pillow")
extras["timm"] = deps_list("timm")
extras["sentencepiece"] = deps_list("sentencepiece", "protobuf")
extras["testing"] = (
@ -270,6 +272,7 @@ extras["all"] = (
+ extras["speech"]
+ extras["vision"]
+ extras["integrations"]
+ extras["timm"]
)
extras["docs_specific"] = deps_list(

View File

@ -47,6 +47,7 @@ from .file_utils import (
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
@ -101,10 +102,12 @@ _import_structure = {
"is_flax_available",
"is_psutil_available",
"is_py3nvml_available",
"is_scipy_available",
"is_sentencepiece_available",
"is_sklearn_available",
"is_speech_available",
"is_tf_available",
"is_timm_available",
"is_tokenizers_available",
"is_torch_available",
"is_torch_tpu_available",
@ -180,6 +183,7 @@ _import_structure = {
"models.deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaTokenizer"],
"models.deberta_v2": ["DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaV2Config"],
"models.deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig"],
"models.detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
"models.distilbert": ["DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertTokenizer"],
"models.dpr": [
"DPR_PRETRAINED_CONFIG_ARCHIVE_MAP",
@ -405,6 +409,7 @@ if is_vision_available():
_import_structure["models.clip"].append("CLIPFeatureExtractor")
_import_structure["models.clip"].append("CLIPProcessor")
_import_structure["models.deit"].append("DeiTFeatureExtractor")
_import_structure["models.detr"].append("DetrFeatureExtractor")
_import_structure["models.vit"].append("ViTFeatureExtractor")
else:
from .utils import dummy_vision_objects
@ -413,6 +418,23 @@ else:
name for name in dir(dummy_vision_objects) if not name.startswith("_")
]
# Timm-backed objects
if is_timm_available() and is_vision_available():
_import_structure["models.detr"].extend(
[
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"DetrForObjectDetection",
"DetrForSegmentation",
"DetrModel",
]
)
else:
from .utils import dummy_timm_objects
_import_structure["utils.dummy_timm_objects"] = [
name for name in dir(dummy_timm_objects) if not name.startswith("_")
]
# PyTorch-backed objects
if is_torch_available():
_import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"]
@ -489,6 +511,7 @@ if is_torch_available():
"MODEL_FOR_MASKED_LM_MAPPING",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"MODEL_FOR_OBJECT_DETECTION_MAPPING",
"MODEL_FOR_PRETRAINING_MAPPING",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
@ -1587,10 +1610,12 @@ if TYPE_CHECKING:
is_flax_available,
is_psutil_available,
is_py3nvml_available,
is_scipy_available,
is_sentencepiece_available,
is_sklearn_available,
is_speech_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_tpu_available,
@ -1666,6 +1691,7 @@ if TYPE_CHECKING:
from .models.deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaTokenizer
from .models.deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
from .models.deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
from .models.detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
from .models.distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertTokenizer
from .models.dpr import (
DPR_PRETRAINED_CONFIG_ARCHIVE_MAP,
@ -1863,13 +1889,23 @@ if TYPE_CHECKING:
from .image_utils import ImageFeatureExtractionMixin
from .models.clip import CLIPFeatureExtractor, CLIPProcessor
from .models.deit import DeiTFeatureExtractor
from .models.detr import DetrFeatureExtractor
from .models.vit import ViTFeatureExtractor
else:
from .utils.dummy_vision_objects import *
# Modeling
if is_torch_available():
if is_timm_available() and is_vision_available():
from .models.detr import (
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
DetrForObjectDetection,
DetrForSegmentation,
DetrModel,
)
else:
from .utils.dummy_timm_objects import *
if is_torch_available():
# Benchmarks
from .benchmark.benchmark import PyTorchBenchmark
from .benchmark.benchmark_args import PyTorchBenchmarkArguments
@ -1939,6 +1975,7 @@ if TYPE_CHECKING:
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,

View File

@ -59,6 +59,7 @@ deps = {
"tensorflow-cpu": "tensorflow-cpu>=2.3",
"tensorflow": "tensorflow>=2.3",
"timeout-decorator": "timeout-decorator",
"timm": "timm",
"tokenizers": "tokenizers>=0.10.1,<0.11",
"torch": "torch>=1.0",
"torchaudio": "torchaudio",

View File

@ -174,6 +174,14 @@ except importlib_metadata.PackageNotFoundError:
_soundfile_available = False
_timm_available = importlib.util.find_spec("timm") is not None
try:
_timm_version = importlib_metadata.version("timm")
logger.debug(f"Successfully imported timm version {_timm_version}")
except importlib_metadata.PackageNotFoundError:
_timm_available = False
_torchaudio_available = importlib.util.find_spec("torchaudio") is not None
try:
_torchaudio_version = importlib_metadata.version("torchaudio")
@ -317,12 +325,14 @@ def is_faiss_available():
return _faiss_available
def is_scipy_available():
return importlib.util.find_spec("scipy") is not None
def is_sklearn_available():
if importlib.util.find_spec("sklearn") is None:
return False
if importlib.util.find_spec("scipy") is None:
return False
return importlib.util.find_spec("sklearn.metrics") and importlib.util.find_spec("scipy.stats")
return is_scipy_available() and importlib.util.find_spec("sklearn.metrics")
def is_sentencepiece_available():
@ -411,6 +421,10 @@ def is_soundfile_availble():
return _soundfile_available
def is_timm_available():
return _timm_available
def is_torchaudio_available():
return _torchaudio_available
@ -536,12 +550,24 @@ explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/ins
"""
# docstyle-ignore
SCIPY_IMPORT_ERROR = """
{0} requires the scipy library but it was not found in your environment. You can install it with pip:
`pip install scipy`
"""
# docstyle-ignore
SPEECH_IMPORT_ERROR = """
{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
`pip install torchaudio`
"""
# docstyle-ignore
TIMM_IMPORT_ERROR = """
{0} requires the timm library but it was not found in your environment. You can install it with pip:
`pip install timm`
"""
# docstyle-ignore
VISION_IMPORT_ERROR = """
@ -562,9 +588,11 @@ BACKENDS_MAPPING = OrderedDict(
("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
("vision", (is_vision_available, VISION_IMPORT_ERROR)),
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
]
)

View File

@ -36,6 +36,7 @@ from . import (
ctrl,
deberta,
deit,
detr,
dialogpt,
distilbert,
dpr,

View File

@ -35,6 +35,7 @@ if is_torch_available():
"MODEL_FOR_MASKED_LM_MAPPING",
"MODEL_FOR_MULTIPLE_CHOICE_MAPPING",
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING",
"MODEL_FOR_OBJECT_DETECTION_MAPPING",
"MODEL_FOR_PRETRAINING_MAPPING",
"MODEL_FOR_QUESTION_ANSWERING_MAPPING",
"MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING",
@ -119,6 +120,7 @@ if TYPE_CHECKING:
MODEL_FOR_MASKED_LM_MAPPING,
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
MODEL_FOR_OBJECT_DETECTION_MAPPING,
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,

View File

@ -39,6 +39,7 @@ from ..ctrl.configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLCo
from ..deberta.configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig
from ..deberta_v2.configuration_deberta_v2 import DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaV2Config
from ..deit.configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig
from ..detr.configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
from ..distilbert.configuration_distilbert import DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig
from ..dpr.configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig
from ..electra.configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig
@ -99,6 +100,7 @@ ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = dict(
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP,
DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP,
BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP,
MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
@ -156,6 +158,7 @@ CONFIG_MAPPING = OrderedDict(
("bigbird_pegasus", BigBirdPegasusConfig),
("deit", DeiTConfig),
("luke", LukeConfig),
("detr", DetrConfig),
("gpt_neo", GPTNeoConfig),
("big_bird", BigBirdConfig),
("speech_to_text", Speech2TextConfig),
@ -219,6 +222,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("bigbird_pegasus", "BigBirdPegasus"),
("deit", "DeiT"),
("luke", "LUKE"),
("detr", "DETR"),
("gpt_neo", "GPT Neo"),
("big_bird", "BigBird"),
("speech_to_text", "Speech2Text"),

View File

@ -106,6 +106,7 @@ from ..deberta_v2.modeling_deberta_v2 import (
DebertaV2Model,
)
from ..deit.modeling_deit import DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTModel
from ..detr.modeling_detr import DetrForObjectDetection, DetrModel
from ..distilbert.modeling_distilbert import (
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
@ -316,6 +317,7 @@ from .configuration_auto import (
DebertaConfig,
DebertaV2Config,
DeiTConfig,
DetrConfig,
DistilBertConfig,
DPRConfig,
ElectraConfig,
@ -372,6 +374,7 @@ MODEL_MAPPING = OrderedDict(
(BigBirdPegasusConfig, BigBirdPegasusModel),
(DeiTConfig, DeiTModel),
(LukeConfig, LukeModel),
(DetrConfig, DetrModel),
(GPTNeoConfig, GPTNeoModel),
(BigBirdConfig, BigBirdModel),
(Speech2TextConfig, Speech2TextModel),
@ -586,6 +589,13 @@ MODEL_FOR_MASKED_LM_MAPPING = OrderedDict(
]
)
MODEL_FOR_OBJECT_DETECTION_MAPPING = OrderedDict(
[
# Model for Object Detection mapping
(DetrConfig, DetrForObjectDetection),
]
)
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping

View File

@ -0,0 +1,72 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...file_utils import _BaseLazyModule, is_timm_available, is_vision_available
_import_structure = {
"configuration_detr": ["DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetrConfig"],
}
if is_vision_available():
_import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"]
if is_timm_available():
_import_structure["modeling_detr"] = [
"DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"DetrForObjectDetection",
"DetrForSegmentation",
"DetrModel",
"DetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_detr import DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, DetrConfig
if is_vision_available():
from .feature_extraction_detr import DetrFeatureExtractor
if is_timm_available():
from .modeling_detr import (
DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
DetrForObjectDetection,
DetrForSegmentation,
DetrModel,
DetrPreTrainedModel,
)
else:
import importlib
import os
import sys
class _LazyModule(_BaseLazyModule):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
__file__ = globals()["__file__"]
__path__ = [os.path.dirname(__file__)]
def _get_module(self, module_name: str):
return importlib.import_module("." + module_name, self.__name__)
sys.modules[__name__] = _LazyModule(__name__, _import_structure)

View File

@ -0,0 +1,205 @@
# coding=utf-8
# Copyright 2021 Facebook AI Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DETR model configuration """
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
DETR_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json",
# See all DETR models at https://huggingface.co/models?filter=detr
}
class DetrConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a :class:`~transformers.DetrModel`. It is used to
instantiate a DETR model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the DETR `facebook/detr-resnet-50
<https://huggingface.co/facebook/detr-resnet-50>`__ architecture.
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
Args:
num_queries (:obj:`int`, `optional`, defaults to 100):
Number of object queries, i.e. detection slots. This is the maximal number of objects
:class:`~transformers.DetrModel` can detect in a single image. For COCO, we recommend 100 queries.
d_model (:obj:`int`, `optional`, defaults to 256):
Dimension of the layers.
encoder_layers (:obj:`int`, `optional`, defaults to 6):
Number of encoder layers.
decoder_layers (:obj:`int`, `optional`, defaults to 6):
Number of decoder layers.
encoder_attention_heads (:obj:`int`, `optional`, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (:obj:`int`, `optional`, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (:obj:`int`, `optional`, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (:obj:`int`, `optional`, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string,
:obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
dropout (:obj:`float`, `optional`, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (:obj:`float`, `optional`, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (:obj:`float`, `optional`, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the encoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
The LayerDrop probability for the decoder. See the `LayerDrop paper <see
https://arxiv.org/abs/1909.11556>`__ for more details.
auxiliary_loss (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (:obj:`str`, `optional`, defaults to :obj:`"sine"`):
Type of position embeddings to be used on top of the image features. One of :obj:`"sine"` or
:obj:`"learned"`.
backbone (:obj:`str`, `optional`, defaults to :obj:`"resnet50"`):
Name of convolutional backbone to use. Supports any convolutional backbone from the timm package. For a
list of all available models, see `this page
<https://rwightman.github.io/pytorch-image-models/#load-a-pretrained-model>`__.
dilation (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether to replace stride with dilation in the last convolutional block (DC5).
class_cost (:obj:`float`, `optional`, defaults to 1):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (:obj:`float`, `optional`, defaults to 5):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (:obj:`float`, `optional`, defaults to 2):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
mask_loss_coefficient (:obj:`float`, `optional`, defaults to 1):
Relative weight of the Focal loss in the panoptic segmentation loss.
dice_loss_coefficient (:obj:`float`, `optional`, defaults to 1):
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
bbox_loss_coefficient (:obj:`float`, `optional`, defaults to 5):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (:obj:`float`, `optional`, defaults to 2):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (:obj:`float`, `optional`, defaults to 0.1):
Relative classification weight of the 'no-object' class in the object detection loss.
Examples::
>>> from transformers import DetrModel, DetrConfig
>>> # Initializing a DETR facebook/detr-resnet-50 style configuration
>>> configuration = DetrConfig()
>>> # Initializing a model from the facebook/detr-resnet-50 style configuration
>>> model = DetrModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "detr"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
num_queries=100,
max_position_embeddings=1024,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
init_xavier_std=1.0,
classifier_dropout=0.0,
scale_embedding=False,
auxiliary_loss=False,
position_embedding_type="sine",
backbone="resnet50",
dilation=False,
class_cost=1,
bbox_cost=5,
giou_cost=2,
mask_loss_coefficient=1,
dice_loss_coefficient=1,
bbox_loss_coefficient=5,
giou_loss_coefficient=2,
eos_coefficient=0.1,
**kwargs
):
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
self.num_queries = num_queries
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
self.backbone = backbone
self.dilation = dilation
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.mask_loss_coefficient = mask_loss_coefficient
self.dice_loss_coefficient = dice_loss_coefficient
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.eos_coefficient = eos_coefficient
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model

View File

@ -0,0 +1,273 @@
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert DETR checkpoints."""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from PIL import Image
import requests
from transformers import DetrConfig, DetrFeatureExtractor, DetrForObjectDetection, DetrForSegmentation
from transformers.utils import logging
from transformers.utils.coco_classes import id2label
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
rename_keys = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"transformer.encoder.layers.{i}.self_attn.out_proj.weight", f"encoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(f"transformer.encoder.layers.{i}.self_attn.out_proj.bias", f"encoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"encoder.layers.{i}.fc1.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"encoder.layers.{i}.fc1.bias"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"encoder.layers.{i}.fc2.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"encoder.layers.{i}.fc2.bias"))
rename_keys.append(
(f"transformer.encoder.layers.{i}.norm1.weight", f"encoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"encoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"encoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"encoder.layers.{i}.final_layer_norm.bias"))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"decoder.layers.{i}.self_attn.out_proj.weight")
)
rename_keys.append(
(f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"decoder.layers.{i}.self_attn.out_proj.bias")
)
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight",
f"decoder.layers.{i}.encoder_attn.out_proj.weight",
)
)
rename_keys.append(
(
f"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias",
f"decoder.layers.{i}.encoder_attn.out_proj.bias",
)
)
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"decoder.layers.{i}.fc1.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"decoder.layers.{i}.fc1.bias"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"decoder.layers.{i}.fc2.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"decoder.layers.{i}.fc2.bias"))
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm1.weight", f"decoder.layers.{i}.self_attn_layer_norm.weight")
)
rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"decoder.layers.{i}.self_attn_layer_norm.bias"))
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.weight", f"decoder.layers.{i}.encoder_attn_layer_norm.weight")
)
rename_keys.append(
(f"transformer.decoder.layers.{i}.norm2.bias", f"decoder.layers.{i}.encoder_attn_layer_norm.bias")
)
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"decoder.layers.{i}.final_layer_norm.weight"))
rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"decoder.layers.{i}.final_layer_norm.bias"))
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("input_proj.weight", "input_projection.weight"),
("input_proj.bias", "input_projection.bias"),
("query_embed.weight", "query_position_embeddings.weight"),
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
("class_embed.weight", "class_labels_classifier.weight"),
("class_embed.bias", "class_labels_classifier.bias"),
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
]
)
def rename_key(state_dict, old, new):
val = state_dict.pop(old)
state_dict[new] = val
def rename_backbone_keys(state_dict):
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
new_key = key.replace("backbone.0.body", "backbone.conv_encoder.model")
new_state_dict[new_key] = value
else:
new_state_dict[key] = value
return new_state_dict
def read_in_q_k_v(state_dict, is_panoptic=False):
prefix = ""
if is_panoptic:
prefix = "detr."
# first: transformer encoder
for i in range(6):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"encoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
state_dict[f"encoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
state_dict[f"encoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
state_dict[f"encoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
state_dict[f"encoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
state_dict[f"encoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6):
# read in weights + bias of input projection layer of self-attention
in_proj_weight = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
state_dict[f"decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:256]
state_dict[f"decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
state_dict[f"decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[256:512]
state_dict[f"decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
state_dict[f"decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
in_proj_weight_cross_attn = state_dict.pop(
f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight"
)
in_proj_bias_cross_attn = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias")
# next, add query, keys and values (in that order) of cross-attention to the state dict
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.weight"] = in_proj_weight_cross_attn[:256, :]
state_dict[f"decoder.layers.{i}.encoder_attn.q_proj.bias"] = in_proj_bias_cross_attn[:256]
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.weight"] = in_proj_weight_cross_attn[256:512, :]
state_dict[f"decoder.layers.{i}.encoder_attn.k_proj.bias"] = in_proj_bias_cross_attn[256:512]
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.weight"] = in_proj_weight_cross_attn[-256:, :]
state_dict[f"decoder.layers.{i}.encoder_attn.v_proj.bias"] = in_proj_bias_cross_attn[-256:]
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_detr_checkpoint(model_name, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our DETR structure.
"""
# load default config
config = DetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
config.backbone = "resnet101"
if "dc5" in model_name:
config.dilation = True
is_panoptic = "panoptic" in model_name
if is_panoptic:
config.num_labels = 250
else:
config.num_labels = 91
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
# load feature extractor
format = "coco_panoptic" if is_panoptic else "coco_detection"
feature_extractor = DetrFeatureExtractor(format=format)
# prepare image
img = prepare_img()
encoding = feature_extractor(images=img, return_tensors="pt")
pixel_values = encoding["pixel_values"]
logger.info(f"Converting model {model_name}...")
# load original model from torch hub
detr = torch.hub.load("facebookresearch/detr", model_name, pretrained=True).eval()
state_dict = detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
src = "detr." + src
rename_key(state_dict, src, dest)
state_dict = rename_backbone_keys(state_dict)
# query, key and value matrices need special treatment
read_in_q_k_v(state_dict, is_panoptic=is_panoptic)
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
prefix = "detr.model." if is_panoptic else "model."
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("detr")
and not key.startswith("class_labels_classifier")
and not key.startswith("bbox_predictor")
):
val = state_dict.pop(key)
state_dict["detr.model" + key[4:]] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
val = state_dict.pop(key)
state_dict["detr." + key] = val
elif key.startswith("bbox_attention") or key.startswith("mask_head"):
continue
else:
val = state_dict.pop(key)
state_dict[prefix + key] = val
else:
if not key.startswith("class_labels_classifier") and not key.startswith("bbox_predictor"):
val = state_dict.pop(key)
state_dict[prefix + key] = val
# finally, create HuggingFace model and load state dict
model = DetrForSegmentation(config) if is_panoptic else DetrForObjectDetection(config)
model.load_state_dict(state_dict)
model.eval()
# verify our conversion
original_outputs = detr(pixel_values)
outputs = model(pixel_values)
assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-4)
assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-4)
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4)
# Save model and feature extractor
logger.info(f"Saving PyTorch model and feature extractor to {pytorch_dump_folder_path}...")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name", default="detr_resnet50", type=str, help="Name of the DETR model you'd like to convert."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
args = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)

View File

@ -0,0 +1,890 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for DETR."""
import io
import pathlib
from collections import defaultdict
from typing import Dict, List, Optional, Union
import numpy as np
from PIL import Image
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...file_utils import TensorType, is_torch_available
from ...image_utils import ImageFeatureExtractionMixin, is_torch_tensor
from ...utils import logging
if is_torch_available():
import torch
import torch.nn.functional as F
logger = logging.get_logger(__name__)
ImageInput = Union[Image.Image, np.ndarray, "torch.Tensor", List[Image.Image], List[np.ndarray], List["torch.Tensor"]]
# 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def center_to_corners_format(x):
"""
Converts a PyTorch tensor of bounding boxes of center format (center_x, center_y, width, height) to corners format
(x_0, y_0, x_1, y_1).
"""
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def corners_to_center_format(x):
"""
Converts a NumPy array of bounding boxes of shape (number of bounding boxes, 4) of corners format (x_0, y_0, x_1,
y_1) to center format (center_x, center_y, width, height).
"""
x_transposed = x.T
x0, y0, x1, y1 = x_transposed[0], x_transposed[1], x_transposed[2], x_transposed[3]
b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
return np.stack(b, axis=-1)
def masks_to_boxes(masks):
"""
Compute the bounding boxes around the provided panoptic segmentation masks.
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensor, with the boxes in corner (xyxy) format.
"""
if masks.size == 0:
return np.zeros((0, 4))
h, w = masks.shape[-2:]
y = np.arange(0, h, dtype=np.float32)
x = np.arange(0, w, dtype=np.float32)
# see https://github.com/pytorch/pytorch/issues/50276
y, x = np.meshgrid(y, x, indexing="ij")
x_mask = masks * np.expand_dims(x, axis=0)
x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
x_min = x.filled(fill_value=1e8)
x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
y_mask = masks * np.expand_dims(y, axis=0)
y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
y_min = y.filled(fill_value=1e8)
y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
return np.stack([x_min, y_min, x_max, y_max], 1)
# 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
# Copyright (c) 2018, Alexander Kirillov
# All rights reserved.
def rgb_to_id(color):
if isinstance(color, np.ndarray) and len(color.shape) == 3:
if color.dtype == np.uint8:
color = color.astype(np.int32)
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
def id_to_rgb(id_map):
if isinstance(id_map, np.ndarray):
id_map_copy = id_map.copy()
rgb_shape = tuple(list(id_map.shape) + [3])
rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
for i in range(3):
rgb_map[..., i] = id_map_copy % 256
id_map_copy //= 256
return rgb_map
color = []
for _ in range(3):
color.append(id_map % 256)
id_map //= 256
return color
class DetrFeatureExtractor(FeatureExtractionMixin, ImageFeatureExtractionMixin):
r"""
Constructs a DETR feature extractor.
This feature extractor inherits from :class:`~transformers.FeatureExtractionMixin` which contains most of the main
methods. Users should refer to this superclass for more information regarding those methods.
Args:
format (:obj:`str`, `optional`, defaults to :obj:`"coco_detection"`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether to resize the input to a certain :obj:`size`.
size (:obj:`int`, `optional`, defaults to 800):
Resize the input to the given size. Only has an effect if :obj:`do_resize` is set to :obj:`True`. If size
is a sequence like :obj:`(width, height)`, output size will be matched to this. If size is an int, smaller
edge of the image will be matched to this number. i.e, if :obj:`height > width`, then image will be
rescaled to :obj:`(size * height / width, size)`.
max_size (:obj:`int`, `optional`, defaults to :obj:`1333`):
The largest size an image dimension can have (otherwise it's capped). Only has an effect if
:obj:`do_resize` is set to :obj:`True`.
do_normalize (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to normalize the input with mean and standard deviation.
image_mean (:obj:`int`, `optional`, defaults to :obj:`[0.485, 0.456, 0.406]s`):
The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean.
image_std (:obj:`int`, `optional`, defaults to :obj:`[0.229, 0.224, 0.225]`):
The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the
ImageNet std.
"""
model_input_names = ["pixel_values", "pixel_mask"]
def __init__(
self,
format="coco_detection",
do_resize=True,
size=800,
max_size=1333,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs
):
super().__init__(**kwargs)
self.format = self._is_valid_format(format)
self.do_resize = do_resize
self.size = size
self.max_size = max_size
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else [0.485, 0.456, 0.406] # ImageNet mean
self.image_std = image_std if image_std is not None else [0.229, 0.224, 0.225] # ImageNet std
def _is_valid_format(self, format):
if format not in ["coco_detection", "coco_panoptic"]:
raise ValueError(f"Format {format} not supported")
return format
def prepare(self, image, target, return_segmentation_masks=False, masks_path=None):
if self.format == "coco_detection":
image, target = self.prepare_coco_detection(image, target, return_segmentation_masks)
return image, target
elif self.format == "coco_panoptic":
image, target = self.prepare_coco_panoptic(image, target, masks_path)
return image, target
else:
raise ValueError(f"Format {self.format} not supported")
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L33
def convert_coco_poly_to_mask(self, segmentations, height, width):
try:
from pycocotools import mask as coco_mask
except ImportError:
raise ImportError("Pycocotools is not installed in your environment.")
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = np.asarray(mask, dtype=np.uint8)
mask = np.any(mask, axis=2)
masks.append(mask)
if masks:
masks = np.stack(masks, axis=0)
else:
masks = np.zeros((0, height, width), dtype=np.uint8)
return masks
# inspired by https://github.com/facebookresearch/detr/blob/master/datasets/coco.py#L50
def prepare_coco_detection(self, image, target, return_segmentation_masks=False):
"""
Convert the target in COCO format into the format expected by DETR.
"""
w, h = image.size
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# get all COCO annotations for the given image
anno = target["annotations"]
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=w)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=h)
classes = [obj["category_id"] for obj in anno]
classes = np.asarray(classes, dtype=np.int64)
if return_segmentation_masks:
segmentations = [obj["segmentation"] for obj in anno]
masks = self.convert_coco_poly_to_mask(segmentations, h, w)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = np.asarray(keypoints, dtype=np.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.reshape((-1, 3))
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if return_segmentation_masks:
masks = masks[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["class_labels"] = classes
if return_segmentation_masks:
target["masks"] = masks
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
# for conversion to coco api
area = np.asarray([obj["area"] for obj in anno], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno], dtype=np.int64)
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = np.asarray([int(h), int(w)], dtype=np.int64)
target["size"] = np.asarray([int(h), int(w)], dtype=np.int64)
return image, target
def prepare_coco_panoptic(self, image, target, masks_path, return_masks=True):
w, h = image.size
ann_info = target.copy()
ann_path = pathlib.Path(masks_path) / ann_info["file_name"]
if "segments_info" in ann_info:
masks = np.asarray(Image.open(ann_path), dtype=np.uint32)
masks = rgb_to_id(masks)
ids = np.array([ann["id"] for ann in ann_info["segments_info"]])
masks = masks == ids[:, None, None]
masks = np.asarray(masks, dtype=np.uint8)
labels = np.asarray([ann["category_id"] for ann in ann_info["segments_info"]], dtype=np.int64)
target = {}
target["image_id"] = np.asarray(
[ann_info["image_id"] if "image_id" in ann_info else ann_info["id"]], dtype=np.int64
)
if return_masks:
target["masks"] = masks
target["class_labels"] = labels
target["boxes"] = masks_to_boxes(masks)
target["size"] = np.asarray([int(h), int(w)], dtype=np.int64)
target["orig_size"] = np.asarray([int(h), int(w)], dtype=np.int64)
if "segments_info" in ann_info:
target["iscrowd"] = np.asarray([ann["iscrowd"] for ann in ann_info["segments_info"]], dtype=np.int64)
target["area"] = np.asarray([ann["area"] for ann in ann_info["segments_info"]], dtype=np.float32)
return image, target
def _resize(self, image, size, target=None, max_size=None):
"""
Resize the image to the given size. Size can be min_size (scalar) or (w, h) tuple. If size is an int, smaller
edge of the image will be matched to this number.
If given, also resize the target accordingly.
"""
if not isinstance(image, Image.Image):
image = self.to_pil_image(image)
def get_size_with_aspect_ratio(image_size, size, max_size=None):
w, h = image_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def get_size(image_size, size, max_size=None):
if isinstance(size, (list, tuple)):
return size
else:
# size returned must be (w, h) since we use PIL to resize images
# so we revert the tuple
return get_size_with_aspect_ratio(image_size, size, max_size)[::-1]
size = get_size(image.size, size, max_size)
rescaled_image = self.resize(image, size=size)
if target is None:
return rescaled_image, None
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
ratio_width, ratio_height = ratios
target = target.copy()
if "boxes" in target:
boxes = target["boxes"]
scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32)
target["boxes"] = scaled_boxes
if "area" in target:
area = target["area"]
scaled_area = area * (ratio_width * ratio_height)
target["area"] = scaled_area
w, h = size
target["size"] = np.asarray([h, w], dtype=np.int64)
if "masks" in target:
# use PyTorch as current workaround
# TODO replace by self.resize
masks = torch.from_numpy(target["masks"][:, None]).float()
interpolated_masks = F.interpolate(masks, size=(h, w), mode="nearest")[:, 0] > 0.5
target["masks"] = interpolated_masks.numpy()
return rescaled_image, target
def _normalize(self, image, mean, std, target=None):
"""
Normalize the image with a certain mean and std.
If given, also normalize the target bounding boxes based on the size of the image.
"""
image = self.normalize(image, mean=mean, std=std)
if target is None:
return image, None
target = target.copy()
h, w = image.shape[-2:]
if "boxes" in target:
boxes = target["boxes"]
boxes = corners_to_center_format(boxes)
boxes = boxes / np.asarray([w, h, w, h], dtype=np.float32)
target["boxes"] = boxes
return image, target
def __call__(
self,
images: ImageInput,
annotations: Union[List[Dict], List[List[Dict]]] = None,
return_segmentation_masks: Optional[bool] = False,
masks_path: Optional[pathlib.Path] = None,
pad_and_return_pixel_mask: Optional[bool] = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare for the model one or several image(s) and optional annotations. Images are by default
padded up to the largest image in a batch, and a pixel mask is created that indicates which pixels are
real/which are padding.
.. warning::
NumPy arrays and PyTorch tensors are converted to PIL images when resizing, so the most efficient is to pass
PIL images.
Args:
images (:obj:`PIL.Image.Image`, :obj:`np.ndarray`, :obj:`torch.Tensor`, :obj:`List[PIL.Image.Image]`, :obj:`List[np.ndarray]`, :obj:`List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
annotations (:obj:`Dict`, :obj:`List[Dict]`, `optional`):
The corresponding annotations in COCO format.
In case :class:`~transformers.DetrFeatureExtractor` was initialized with :obj:`format =
"coco_detection"`, the annotations for each image should have the following format: {'image_id': int,
'annotations': [annotation]}, with the annotations being a list of COCO object annotations.
In case :class:`~transformers.DetrFeatureExtractor` was initialized with :obj:`format =
"coco_panoptic"`, the annotations for each image should have the following format: {'image_id': int,
'file_name': str, 'segments_info': [segment_info]} with segments_info being a list of COCO panoptic
annotations.
return_segmentation_masks (:obj:`Dict`, :obj:`List[Dict]`, `optional`, defaults to :obj:`False`):
Whether to also return instance segmentation masks in case :obj:`format = "coco_detection"`.
masks_path (:obj:`pathlib.Path`, `optional`):
Path to the directory containing the PNG files that store the class-agnostic image segmentations. Only
relevant in case :class:`~transformers.DetrFeatureExtractor` was initialized with :obj:`format =
"coco_panoptic"`.
pad_and_return_pixel_mask (:obj:`bool`, `optional`, defaults to :obj:`True`):
Whether or not to pad images up to the largest image in a batch and create a pixel mask.
If left to the default, will return a pixel mask that is:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of NumPy arrays. If set to :obj:`'pt'`, return PyTorch
:obj:`torch.Tensor` objects.
Returns:
:class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
- **pixel_mask** -- Pixel mask to be fed to a model (when :obj:`pad_and_return_pixel_mask=True` or if
`"pixel_mask"` is in :obj:`self.model_input_names`).
"""
# Input type checking for clearer error
valid_images = False
valid_annotations = False
valid_masks_path = False
# Check that images has a valid type
if isinstance(images, (Image.Image, np.ndarray)) or is_torch_tensor(images):
valid_images = True
elif isinstance(images, (list, tuple)):
if len(images) == 0 or isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]):
valid_images = True
if not valid_images:
raise ValueError(
"Images must of type `PIL.Image.Image`, `np.ndarray` or `torch.Tensor` (single example),"
"`List[PIL.Image.Image]`, `List[np.ndarray]` or `List[torch.Tensor]` (batch of examples)."
)
is_batched = bool(
isinstance(images, (list, tuple))
and (isinstance(images[0], (Image.Image, np.ndarray)) or is_torch_tensor(images[0]))
)
# Check that annotations has a valid type
if annotations is not None:
if not is_batched:
if self.format == "coco_detection":
if isinstance(annotations, dict) and "image_id" in annotations and "annotations" in annotations:
if isinstance(annotations["annotations"], (list, tuple)):
# an image can have no annotations
if len(annotations["annotations"]) == 0 or isinstance(annotations["annotations"][0], dict):
valid_annotations = True
elif self.format == "coco_panoptic":
if isinstance(annotations, dict) and "image_id" in annotations and "segments_info" in annotations:
if isinstance(annotations["segments_info"], (list, tuple)):
# an image can have no segments (?)
if len(annotations["segments_info"]) == 0 or isinstance(
annotations["segments_info"][0], dict
):
valid_annotations = True
else:
if isinstance(annotations, (list, tuple)):
assert len(images) == len(annotations), "There must be as many annotations as there are images"
if isinstance(annotations[0], Dict):
if self.format == "coco_detection":
if isinstance(annotations[0]["annotations"], (list, tuple)):
valid_annotations = True
elif self.format == "coco_panoptic":
if isinstance(annotations[0]["segments_info"], (list, tuple)):
valid_annotations = True
if not valid_annotations:
raise ValueError(
"""
Annotations must of type `Dict` (single image) or `List[Dict]` (batch of images). In case of object
detection, each dictionary should contain the keys 'image_id' and 'annotations', with the latter
being a list of annotations in COCO format. In case of panoptic segmentation, each dictionary
should contain the keys 'file_name', 'image_id' and 'segments_info', with the latter being a list
of annotations in COCO format.
"""
)
# Check that masks_path has a valid type
if masks_path is not None:
if self.format == "coco_panoptic":
if isinstance(masks_path, pathlib.Path):
valid_masks_path = True
if not valid_masks_path:
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a `pathlib.Path` object."
)
if not is_batched:
images = [images]
if annotations is not None:
annotations = [annotations]
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
for idx, (image, target) in enumerate(zip(images, annotations)):
if not isinstance(image, Image.Image):
image = self.to_pil_image(image)
image, target = self.prepare(image, target, return_segmentation_masks, masks_path)
images[idx] = image
annotations[idx] = target
# transformations (resizing + normalization)
if self.do_resize and self.size is not None:
if annotations is not None:
for idx, (image, target) in enumerate(zip(images, annotations)):
image, target = self._resize(image=image, target=target, size=self.size, max_size=self.max_size)
images[idx] = image
annotations[idx] = target
else:
for idx, image in enumerate(images):
images[idx] = self._resize(image=image, target=None, size=self.size, max_size=self.max_size)[0]
if self.do_normalize:
if annotations is not None:
for idx, (image, target) in enumerate(zip(images, annotations)):
image, target = self._normalize(
image=image, mean=self.image_mean, std=self.image_std, target=target
)
images[idx] = image
annotations[idx] = target
else:
images = [
self._normalize(image=image, mean=self.image_mean, std=self.image_std)[0] for image in images
]
if pad_and_return_pixel_mask:
# pad images up to largest image in batch and create pixel_mask
max_size = self._max_by_axis([list(image.shape) for image in images])
c, h, w = max_size
padded_images = []
pixel_mask = []
for image in images:
# create padded image
padded_image = np.zeros((c, h, w), dtype=np.float32)
padded_image[: image.shape[0], : image.shape[1], : image.shape[2]] = np.copy(image)
padded_images.append(padded_image)
# create pixel mask
mask = np.zeros((h, w), dtype=np.int64)
mask[: image.shape[1], : image.shape[2]] = True
pixel_mask.append(mask)
images = padded_images
# return as BatchFeature
data = {}
data["pixel_values"] = images
if pad_and_return_pixel_mask:
data["pixel_mask"] = pixel_mask
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
# Convert to TensorType
tensor_type = return_tensors
if not isinstance(tensor_type, TensorType):
tensor_type = TensorType(tensor_type)
if not tensor_type == TensorType.PYTORCH:
raise ValueError("Only PyTorch is supported for the moment.")
else:
if not is_torch_available():
raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.")
encoded_inputs["target"] = [
{k: torch.from_numpy(v) for k, v in target.items()} for target in annotations
]
return encoded_inputs
def _max_by_axis(self, the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
def pad_and_create_pixel_mask(
self, pixel_values_list: List["torch.Tensor"], return_tensors: Optional[Union[str, TensorType]] = None
):
"""
Pad images up to the largest image in a batch and create a corresponding :obj:`pixel_mask`.
Args:
pixel_values_list (:obj:`List[torch.Tensor]`):
List of images (pixel values) to be padded. Each image should be a tensor of shape (C, H, W).
return_tensors (:obj:`str` or :class:`~transformers.file_utils.TensorType`, `optional`):
If set, will return tensors instead of NumPy arrays. If set to :obj:`'pt'`, return PyTorch
:obj:`torch.Tensor` objects.
Returns:
:class:`~transformers.BatchFeature`: A :class:`~transformers.BatchFeature` with the following fields:
- **pixel_values** -- Pixel values to be fed to a model.
- **pixel_mask** -- Pixel mask to be fed to a model (when :obj:`pad_and_return_pixel_mask=True` or if
`"pixel_mask"` is in :obj:`self.model_input_names`).
"""
max_size = self._max_by_axis([list(image.shape) for image in pixel_values_list])
c, h, w = max_size
padded_images = []
pixel_mask = []
for image in pixel_values_list:
# create padded image
padded_image = np.zeros((c, h, w), dtype=np.float32)
padded_image[: image.shape[0], : image.shape[1], : image.shape[2]] = np.copy(image)
padded_images.append(padded_image)
# create pixel mask
mask = np.zeros((h, w), dtype=np.int64)
mask[: image.shape[1], : image.shape[2]] = True
pixel_mask.append(mask)
# return as BatchFeature
data = {"pixel_values": padded_images, "pixel_mask": pixel_mask}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
# POSTPROCESSING METHODS
# inspired by https://github.com/facebookresearch/detr/blob/master/models/detr.py#L258
def post_process(self, outputs, target_sizes):
"""
Converts the output of :class:`~transformers.DetrForObjectDetection` into the format expected by the COCO api.
Only supports PyTorch.
Args:
outputs (:class:`~transformers.DetrObjectDetectionOutput`):
Raw outputs of the model.
target_sizes (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)`, `optional`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation). For visualization, this should be the image size after data
augment, but before padding.
Returns:
:obj:`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an
image in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
assert len(out_logits) == len(
target_sizes
), "Make sure that you pass in as many target sizes as the batch dimension of the logits"
assert (
target_sizes.shape[1] == 2
), "Each element of target_sizes must contain the size (h, w) of each image of the batch"
prob = F.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L218
def post_process_segmentation(self, results, outputs, orig_target_sizes, max_target_sizes, threshold=0.5):
"""
Converts the output of :class:`~transformers.DetrForSegmentation` into actual instance segmentation
predictions. Only supports PyTorch.
Args:
results (:obj:`List[Dict]`):
Results list obtained by :meth:`~transformers.DetrFeatureExtractor.post_process`, to which "masks"
results will be added.
outputs (:class:`~transformers.DetrSegmentationOutput`):
Raw outputs of the model.
orig_target_sizes (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation).
max_target_sizes (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)`):
Tensor containing the maximum size (h, w) of each image of the batch. For evaluation, this must be the
original image size (before any data augmentation).
threshold (:obj:`float`, `optional`, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
Returns:
:obj:`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels, boxes and masks
for an image in the batch as predicted by the model.
"""
assert len(orig_target_sizes) == len(
max_target_sizes
), "Make sure to pass in as many orig_target_sizes as max_target_sizes"
max_h, max_w = max_target_sizes.max(0)[0].tolist()
outputs_masks = outputs.pred_masks.squeeze(2)
outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
outputs_masks = (outputs_masks.sigmoid() > threshold).cpu()
for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
img_h, img_w = t[0], t[1]
results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
results[i]["masks"] = F.interpolate(
results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
).byte()
return results
# inspired by https://github.com/facebookresearch/detr/blob/master/models/segmentation.py#L241
def post_process_panoptic(self, outputs, processed_sizes, target_sizes=None, is_thing_map=None, threshold=0.85):
"""
Converts the output of :class:`~transformers.DetrForSegmentation` into actual panoptic predictions. Only
supports PyTorch.
Parameters:
outputs (:class:`~transformers.DetrSegmentationOutput`):
Raw outputs of the model.
processed_sizes (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)` or :obj:`List[Tuple]` of length :obj:`batch_size`):
Torch Tensor (or list) containing the size (h, w) of each image of the batch, i.e. the size after data
augmentation but before batching.
target_sizes (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)` or :obj:`List[Tuple]` of length :obj:`batch_size`, `optional`):
Torch Tensor (or list) corresponding to the requested final size (h, w) of each prediction. If left to
None, it will default to the :obj:`processed_sizes`.
is_thing_map (:obj:`torch.Tensor` of shape :obj:`(batch_size, 2)`, `optional`):
Dictionary mapping class indices to either True or False, depending on whether or not they are a thing.
If not set, defaults to the :obj:`is_thing_map` of COCO panoptic.
threshold (:obj:`float`, `optional`, defaults to 0.85):
Threshold to use to filter out queries.
Returns:
:obj:`List[Dict]`: A list of dictionaries, each dictionary containing a PNG string and segments_info values
for an image in the batch as predicted by the model.
"""
if target_sizes is None:
target_sizes = processed_sizes
assert len(processed_sizes) == len(
target_sizes
), "Make sure to pass in as many processed_sizes as target_sizes"
if is_thing_map is None:
# default to is_thing_map of COCO panoptic
is_thing_map = {i: i <= 90 for i in range(201)}
out_logits, raw_masks, raw_boxes = outputs.logits, outputs.pred_masks, outputs.pred_boxes
assert (
len(out_logits) == len(raw_masks) == len(target_sizes)
), "Make sure that you pass in as many target sizes as the batch dimension of the logits and masks"
preds = []
def to_tuple(tup):
if isinstance(tup, tuple):
return tup
return tuple(tup.cpu().tolist())
for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
):
# we filter empty queries and detection below threshold
scores, labels = cur_logits.softmax(-1).max(-1)
keep = labels.ne(outputs.logits.shape[-1] - 1) & (scores > threshold)
cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
cur_scores = cur_scores[keep]
cur_classes = cur_classes[keep]
cur_masks = cur_masks[keep]
cur_masks = F.interpolate(cur_masks[:, None], to_tuple(size), mode="bilinear").squeeze(1)
cur_boxes = center_to_corners_format(cur_boxes[keep])
h, w = cur_masks.shape[-2:]
assert len(cur_boxes) == len(cur_classes), "Not as many boxes as there are classes"
# It may be that we have several predicted masks for the same stuff class.
# In the following, we track the list of masks ids for each stuff class (they are merged later on)
cur_masks = cur_masks.flatten(1)
stuff_equiv_classes = defaultdict(lambda: [])
for k, label in enumerate(cur_classes):
if not is_thing_map[label.item()]:
stuff_equiv_classes[label.item()].append(k)
def get_ids_area(masks, scores, dedup=False):
# This helper function creates the final panoptic segmentation image
# It also returns the area of the masks that appears on the image
m_id = masks.transpose(0, 1).softmax(-1)
if m_id.shape[-1] == 0:
# We didn't detect any mask :(
m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
else:
m_id = m_id.argmax(-1).view(h, w)
if dedup:
# Merge the masks corresponding to the same stuff class
for equiv in stuff_equiv_classes.values():
if len(equiv) > 1:
for eq_id in equiv:
m_id.masked_fill_(m_id.eq(eq_id), equiv[0])
final_h, final_w = to_tuple(target_size)
seg_img = Image.fromarray(id_to_rgb(m_id.view(h, w).cpu().numpy()))
seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)
np_seg_img = torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes()))
np_seg_img = np_seg_img.view(final_h, final_w, 3)
np_seg_img = np_seg_img.numpy()
m_id = torch.from_numpy(rgb_to_id(np_seg_img))
area = []
for i in range(len(scores)):
area.append(m_id.eq(i).sum().item())
return area, seg_img
area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
if cur_classes.numel() > 0:
# We know filter empty masks as long as we find some
while True:
filtered_small = torch.as_tensor(
[area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
)
if filtered_small.any().item():
cur_scores = cur_scores[~filtered_small]
cur_classes = cur_classes[~filtered_small]
cur_masks = cur_masks[~filtered_small]
area, seg_img = get_ids_area(cur_masks, cur_scores)
else:
break
else:
cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)
segments_info = []
for i, a in enumerate(area):
cat = cur_classes[i].item()
segments_info.append({"id": i, "isthing": is_thing_map[cat], "category_id": cat, "area": a})
del cur_classes
with io.BytesIO() as out:
seg_img.save(out, format="PNG")
predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
preds.append(predictions)
return preds

File diff suppressed because it is too large Load Diff

View File

@ -39,6 +39,7 @@ from .file_utils import (
is_sentencepiece_available,
is_soundfile_availble,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_tpu_available,
@ -229,6 +230,19 @@ def require_onnx(test_case):
return test_case
def require_timm(test_case):
"""
Decorator marking a test that requires Timm.
These tests are skipped when Timm isn't installed.
"""
if not is_timm_available():
return unittest.skip("test requires Timm")(test_case)
else:
return test_case
def require_torch(test_case):
"""
Decorator marking a test that requires PyTorch.

View File

@ -0,0 +1,94 @@
# COCO object detection id's to class names
id2label = {
0: "N/A",
1: "person",
2: "bicycle",
3: "car",
4: "motorcycle",
5: "airplane",
6: "bus",
7: "train",
8: "truck",
9: "boat",
10: "traffic light",
11: "fire hydrant",
12: "N/A",
13: "stop sign",
14: "parking meter",
15: "bench",
16: "bird",
17: "cat",
18: "dog",
19: "horse",
20: "sheep",
21: "cow",
22: "elephant",
23: "bear",
24: "zebra",
25: "giraffe",
26: "N/A",
27: "backpack",
28: "umbrella",
29: "N/A",
30: "N/A",
31: "handbag",
32: "tie",
33: "suitcase",
34: "frisbee",
35: "skis",
36: "snowboard",
37: "sports ball",
38: "kite",
39: "baseball bat",
40: "baseball glove",
41: "skateboard",
42: "surfboard",
43: "tennis racket",
44: "bottle",
45: "N/A",
46: "wine glass",
47: "cup",
48: "fork",
49: "knife",
50: "spoon",
51: "bowl",
52: "banana",
53: "apple",
54: "sandwich",
55: "orange",
56: "broccoli",
57: "carrot",
58: "hot dog",
59: "pizza",
60: "donut",
61: "cake",
62: "chair",
63: "couch",
64: "potted plant",
65: "bed",
66: "N/A",
67: "dining table",
68: "N/A",
69: "N/A",
70: "toilet",
71: "N/A",
72: "tv",
73: "laptop",
74: "mouse",
75: "remote",
76: "keyboard",
77: "cell phone",
78: "microwave",
79: "oven",
80: "toaster",
81: "sink",
82: "refrigerator",
83: "N/A",
84: "book",
85: "clock",
86: "vase",
87: "scissors",
88: "teddy bear",
89: "hair drier",
90: "toothbrush",
}

View File

@ -334,6 +334,9 @@ MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None
MODEL_FOR_OBJECT_DETECTION_MAPPING = None
MODEL_FOR_PRETRAINING_MAPPING = None

View File

@ -0,0 +1,24 @@
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..file_utils import requires_backends
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DetrForObjectDetection:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
class DetrForSegmentation:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
class DetrModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["timm", "vision"])

View File

@ -0,0 +1,24 @@
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..file_utils import requires_backends
DETR_PRETRAINED_MODEL_ARCHIVE_LIST = None
class DetrForObjectDetection:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
class DetrForSegmentation:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
class DetrModel:
def __init__(self, *args, **kwargs):
requires_backends(self, ["timm"])
@classmethod
def from_pretrained(self, *args, **kwargs):
requires_backends(self, ["timm"])

View File

@ -22,6 +22,11 @@ class DeiTFeatureExtractor:
requires_backends(self, ["vision"])
class DetrFeatureExtractor:
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])
class ViTFeatureExtractor:
def __init__(self, *args, **kwargs):
requires_backends(self, ["vision"])

Binary file not shown.

Before

Width:  |  Height:  |  Size: 86 KiB

View File

@ -1,4 +1,3 @@
*.*
cache*
temp*
!*.txt

View File

Before

Width:  |  Height:  |  Size: 678 KiB

After

Width:  |  Height:  |  Size: 678 KiB

View File

@ -0,0 +1 @@
[{"segmentation": [[333.96, 175.14, 338.26, 134.33, 342.55, 95.67, 348.99, 79.57, 368.32, 80.64, 371.54, 91.38, 364.03, 106.41, 356.51, 145.07, 351.14, 166.55, 350.07, 184.8, 345.77, 185.88, 332.89, 178.36, 332.89, 172.99]], "area": 2120.991099999999, "iscrowd": 0, "image_id": 39769, "bbox": [332.89, 79.57, 38.65, 106.31], "category_id": 75, "id": 1108446}, {"segmentation": [[44.03, 86.01, 112.75, 74.2, 173.96, 77.42, 175.03, 89.23, 170.74, 98.9, 147.11, 102.12, 54.77, 119.3, 53.69, 119.3, 44.03, 113.93, 41.88, 94.6, 41.88, 94.6]], "area": 4052.607, "iscrowd": 0, "image_id": 39769, "bbox": [41.88, 74.2, 133.15, 45.1], "category_id": 75, "id": 1110067}, {"segmentation": [[1.08, 473.53, 633.17, 473.53, 557.66, 376.45, 535.01, 366.74, 489.71, 305.26, 470.29, 318.2, 456.27, 351.64, 413.12, 363.51, 376.45, 358.11, 348.4, 350.56, 363.51, 331.15, 357.03, 288.0, 353.8, 257.8, 344.09, 190.92, 333.3, 177.98, 345.17, 79.82, 284.76, 130.52, 265.35, 151.01, 308.49, 189.84, 317.12, 215.73, 293.39, 243.78, 269.66, 212.49, 235.15, 199.55, 214.65, 193.08, 187.69, 217.89, 159.64, 278.29, 135.91, 313.89, 169.35, 292.31, 203.87, 281.53, 220.04, 292.31, 220.04, 307.42, 175.82, 345.17, 155.33, 360.27, 105.71, 363.51, 85.21, 374.29, 74.43, 366.74, 70.11, 465.98, 42.07, 471.37, 33.44, 457.35, 34.52, 414.2, 29.12, 368.9, 9.71, 291.24, 46.38, 209.26, 99.24, 128.36, 131.6, 107.87, 50.7, 117.57, 40.99, 103.55, 40.99, 85.21, 60.4, 77.66, 141.3, 70.11, 173.66, 72.27, 174.74, 92.76, 204.94, 72.27, 225.44, 62.56, 262.11, 56.09, 292.31, 53.93, 282.61, 81.98, 298.79, 96.0, 310.65, 102.47, 348.4, 74.43, 373.21, 81.98, 430.38, 35.6, 484.31, 23.73, 540.4, 46.38, 593.26, 66.88, 638.56, 80.9, 632.09, 145.62, 581.39, 118.65, 543.64, 130.52, 533.93, 167.19, 512.36, 197.39, 498.34, 218.97, 529.62, 253.48, 549.03, 273.98, 584.63, 276.13, 587.87, 293.39, 566.29, 305.26, 531.78, 298.79, 549.03, 319.28, 576.0, 358.11, 560.9, 376.45, 639.64, 471.37, 639.64, 2.16, 1.08, 0.0]], "area": 176277.55269999994, "iscrowd": 0, "image_id": 39769, "bbox": [1.08, 0.0, 638.56, 473.53], "category_id": 63, "id": 1605237}, {"segmentation": [[1.07, 1.18, 640.0, 3.33, 638.93, 472.59, 4.3, 479.03]], "area": 301552.6694999999, "iscrowd": 0, "image_id": 39769, "bbox": [1.07, 1.18, 638.93, 477.85], "category_id": 65, "id": 1612051}, {"segmentation": [[138.75, 319.38, 148.75, 294.38, 165.0, 246.87, 197.5, 205.63, 247.5, 203.13, 268.75, 216.88, 280.0, 239.38, 293.75, 244.38, 303.75, 241.88, 307.5, 228.13, 318.75, 220.63, 315.0, 200.63, 291.25, 171.88, 265.0, 156.88, 258.75, 148.13, 262.5, 135.63, 282.5, 123.13, 292.5, 115.63, 311.25, 108.13, 313.75, 106.88, 296.25, 93.13, 282.5, 84.38, 292.5, 64.38, 288.75, 60.63, 266.25, 54.38, 232.5, 63.12, 206.25, 70.63, 170.0, 100.63, 136.25, 114.38, 101.25, 138.13, 56.25, 194.38, 27.5, 259.38, 17.5, 299.38, 32.5, 378.13, 31.25, 448.13, 41.25, 469.38, 66.25, 466.88, 70.0, 419.38, 71.25, 391.88, 77.5, 365.63, 113.75, 364.38, 145.0, 360.63, 168.75, 349.38, 191.25, 330.63, 212.5, 319.38, 223.75, 305.63, 206.25, 286.88, 172.5, 288.13]], "area": 53301.618749999994, "iscrowd": 0, "image_id": 39769, "bbox": [17.5, 54.38, 301.25, 415.0], "category_id": 17, "id": 2190839}, {"segmentation": [[543.75, 136.88, 570.0, 114.38, 591.25, 123.13, 616.25, 140.63, 640.0, 143.13, 636.25, 124.37, 605.0, 103.13, 640.0, 103.13, 633.75, 86.88, 587.5, 73.13, 548.75, 49.38, 505.0, 35.63, 462.5, 25.63, 405.0, 48.13, 362.5, 111.88, 347.5, 179.38, 355.0, 220.63, 356.25, 230.63, 365.0, 264.38, 358.75, 266.88, 358.75, 270.63, 356.25, 291.88, 356.25, 325.63, 355.0, 338.13, 350.0, 348.13, 365.0, 354.38, 396.25, 351.88, 423.75, 355.63, 446.25, 350.63, 460.0, 345.63, 462.5, 321.88, 468.75, 306.88, 481.25, 299.38, 516.25, 341.88, 536.25, 368.13, 570.0, 369.38, 578.75, 359.38, 555.0, 330.63, 532.5, 298.13, 563.75, 299.38, 582.5, 298.13, 586.25, 286.88, 578.75, 278.13, 548.75, 269.38, 525.0, 256.88, 505.0, 206.88, 536.25, 161.88, 540.0, 149.38]], "area": 59700.95625, "iscrowd": 0, "image_id": 39769, "bbox": [347.5, 25.63, 292.5, 343.75], "category_id": 17, "id": 2190842}]

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.1 KiB

View File

@ -0,0 +1 @@
[{"id": 8222595, "category_id": 17, "iscrowd": 0, "bbox": [18, 54, 301, 415], "area": 53306}, {"id": 8225432, "category_id": 17, "iscrowd": 0, "bbox": [349, 26, 291, 343], "area": 59627}, {"id": 8798150, "category_id": 63, "iscrowd": 0, "bbox": [1, 0, 639, 474], "area": 174579}, {"id": 14466198, "category_id": 75, "iscrowd": 0, "bbox": [42, 74, 133, 45], "area": 4068}, {"id": 12821912, "category_id": 75, "iscrowd": 0, "bbox": [333, 80, 38, 106], "area": 2118}, {"id": 10898909, "category_id": 93, "iscrowd": 0, "bbox": [0, 0, 640, 480], "area": 2750}]

View File

@ -18,6 +18,57 @@ import json
import os
import tempfile
from transformers.file_utils import is_torch_available, is_vision_available
if is_torch_available():
import numpy as np
import torch
if is_vision_available():
from PIL import Image
def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(feature_extract_tester.batch_size):
image_inputs.append(
np.random.randint(
255,
size=(
feature_extract_tester.num_channels,
feature_extract_tester.max_resolution,
feature_extract_tester.max_resolution,
),
dtype=np.uint8,
)
)
else:
image_inputs = []
for i in range(feature_extract_tester.batch_size):
width, height = np.random.choice(
np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
)
image_inputs.append(
np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(x) for x in image_inputs]
return image_inputs
class FeatureExtractionSavingTestMixin:
def test_feat_extract_to_json_string(self):

View File

@ -21,7 +21,7 @@ import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
@ -75,36 +75,6 @@ class DeiTFeatureExtractionTester(unittest.TestCase):
"image_std": self.image_std,
}
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(self.batch_size):
image_inputs.append(
np.random.randint(
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
)
)
else:
image_inputs = []
for i in range(self.batch_size):
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(x) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
@ -136,7 +106,7 @@ class DeiTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestC
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
@ -168,7 +138,7 @@ class DeiTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestC
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, numpify=True)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
@ -200,7 +170,7 @@ class DeiTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestC
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, torchify=True)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)

View File

@ -0,0 +1,339 @@
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import pathlib
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrFeatureExtractor
class DetrFeatureExtractionTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=18,
max_size=1333, # by setting max_size > max_resolution we're effectively not testing this :p
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.max_size = max_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_feat_extract_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"max_size": self.max_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to DetrFeatureExtractor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
image = image_inputs[0]
if isinstance(image, Image.Image):
w, h = image.size
else:
h, w = image.shape[1], image.shape[2]
if w < h:
expected_height = int(self.size * h / w)
expected_width = self.size
elif w > h:
expected_height = self.size
expected_width = int(self.size * w / h)
else:
expected_height = self.size
expected_width = self.size
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class DetrFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = DetrFeatureExtractor if is_vision_available() else None
def setUp(self):
self.feature_extract_tester = DetrFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_feat_extract_properties(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
self.assertTrue(hasattr(feature_extractor, "image_mean"))
self.assertTrue(hasattr(feature_extractor, "image_std"))
self.assertTrue(hasattr(feature_extractor, "do_normalize"))
self.assertTrue(hasattr(feature_extractor, "do_resize"))
self.assertTrue(hasattr(feature_extractor, "size"))
self.assertTrue(hasattr(feature_extractor, "max_size"))
def test_batch_feature(self):
pass
def test_call_pil(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_pytorch(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs)
self.assertEqual(
encoded_images.shape,
(1, self.feature_extract_tester.num_channels, expected_height, expected_width),
)
# Test batched
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values
expected_height, expected_width = self.feature_extract_tester.get_expected_values(image_inputs, batched=True)
self.assertEqual(
encoded_images.shape,
(
self.feature_extract_tester.batch_size,
self.feature_extract_tester.num_channels,
expected_height,
expected_width,
),
)
def test_equivalence_pad_and_create_pixel_mask(self):
# Initialize feature_extractors
feature_extractor_1 = self.feature_extraction_class(**self.feat_extract_dict)
feature_extractor_2 = self.feature_extraction_class(do_resize=False, do_normalize=False)
# create random PyTorch tensors
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test whether the method "pad_and_return_pixel_mask" and calling the feature extractor return the same tensors
encoded_images_with_method = feature_extractor_1.pad_and_create_pixel_mask(image_inputs, return_tensors="pt")
encoded_images = feature_extractor_2(image_inputs, return_tensors="pt")
assert torch.allclose(encoded_images_with_method["pixel_values"], encoded_images["pixel_values"], atol=1e-4)
assert torch.allclose(encoded_images_with_method["pixel_mask"], encoded_images["pixel_mask"], atol=1e-4)
@slow
def test_call_pytorch_with_coco_detection_annotations(self):
# prepare image and target
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"image_id": 39769, "annotations": target}
# encode them
# TODO replace by facebook/detr-resnet-50
feature_extractor = DetrFeatureExtractor.from_pretrained("nielsr/detr-resnet-50")
encoding = feature_extractor(images=image, annotations=target, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
assert torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)
# verify area
expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438])
assert torch.allclose(encoding["target"][0]["area"], expected_area)
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["target"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215])
assert torch.allclose(encoding["target"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)
# verify image_id
expected_image_id = torch.tensor([39769])
assert torch.allclose(encoding["target"][0]["image_id"], expected_image_id)
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
assert torch.allclose(encoding["target"][0]["iscrowd"], expected_is_crowd)
# verify class_labels
expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17])
assert torch.allclose(encoding["target"][0]["class_labels"], expected_class_labels)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
assert torch.allclose(encoding["target"][0]["orig_size"], expected_orig_size)
# verify size
expected_size = torch.tensor([800, 1066])
assert torch.allclose(encoding["target"][0]["size"], expected_size)
@slow
def test_call_pytorch_with_coco_panoptic_annotations(self):
# prepare image, target and masks_path
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f:
target = json.loads(f.read())
target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic")
# encode them
# TODO replace by .from_pretrained facebook/detr-resnet-50-panoptic
feature_extractor = DetrFeatureExtractor(format="coco_panoptic")
encoding = feature_extractor(images=image, annotations=target, masks_path=masks_path, return_tensors="pt")
# verify pixel values
expected_shape = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding["pixel_values"].shape, expected_shape)
expected_slice = torch.tensor([0.2796, 0.3138, 0.3481])
assert torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)
# verify area
expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147])
assert torch.allclose(encoding["target"][0]["area"], expected_area)
# verify boxes
expected_boxes_shape = torch.Size([6, 4])
self.assertEqual(encoding["target"][0]["boxes"].shape, expected_boxes_shape)
expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625])
assert torch.allclose(encoding["target"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)
# verify image_id
expected_image_id = torch.tensor([39769])
assert torch.allclose(encoding["target"][0]["image_id"], expected_image_id)
# verify is_crowd
expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0])
assert torch.allclose(encoding["target"][0]["iscrowd"], expected_is_crowd)
# verify class_labels
expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93])
assert torch.allclose(encoding["target"][0]["class_labels"], expected_class_labels)
# verify masks
expected_masks_sum = 822338
self.assertEqual(encoding["target"][0]["masks"].sum().item(), expected_masks_sum)
# verify orig_size
expected_orig_size = torch.tensor([480, 640])
assert torch.allclose(encoding["target"][0]["orig_size"], expected_orig_size)
# verify size
expected_size = torch.tensor([800, 1066])
assert torch.allclose(encoding["target"][0]["size"], expected_size)

View File

@ -21,7 +21,7 @@ import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin, prepare_image_inputs
if is_torch_available():
@ -69,36 +69,6 @@ class ViTFeatureExtractionTester(unittest.TestCase):
"size": self.size,
}
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(self.batch_size):
image_inputs.append(
np.random.randint(
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8
)
)
else:
image_inputs = []
for i in range(self.batch_size):
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2)
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(x) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
@ -128,7 +98,7 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PIL images
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
@ -160,7 +130,7 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random numpy tensors
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, numpify=True)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
@ -192,7 +162,7 @@ class ViTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCa
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict)
# create random PyTorch tensors
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, torchify=True)
image_inputs = prepare_image_inputs(self.feature_extract_tester, equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)

View File

@ -21,7 +21,7 @@ import random
import tempfile
import unittest
import warnings
from typing import List, Tuple
from typing import Dict, List, Tuple
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
@ -982,7 +982,6 @@ class ModelTesterMixin:
outputs = model(**inputs)
print(outputs)
output = outputs[0]
if config.is_encoder_decoder:
@ -1236,6 +1235,11 @@ class ModelTesterMixin:
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:

View File

@ -360,7 +360,7 @@ class DeiTModelTest(ModelTesterMixin, unittest.TestCase):
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/cats.png")
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image

527
tests/test_modeling_detr.py Normal file
View File

@ -0,0 +1,527 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DETR model. """
import inspect
import math
import unittest
from transformers import is_timm_available, is_vision_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_timm, require_vision, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor
if is_timm_available():
import torch
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrModel
if is_vision_available():
from PIL import Image
from transformers import DetrFeatureExtractor
@require_timm
class DetrModelTester:
def __init__(
self,
parent,
batch_size=8,
is_training=True,
use_labels=True,
hidden_size=256,
num_hidden_layers=2,
num_attention_heads=8,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_queries=12,
num_channels=3,
min_size=200,
max_size=200,
n_targets=8,
num_labels=91,
):
self.parent = parent
self.batch_size = batch_size
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_queries = num_queries
self.num_channels = num_channels
self.min_size = min_size
self.max_size = max_size
self.n_targets = n_targets
self.num_labels = num_labels
# we also set the expected seq length for both encoder and decoder
self.encoder_seq_length = math.ceil(self.min_size / 32) * math.ceil(self.max_size / 32)
self.decoder_seq_length = self.num_queries
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size])
pixel_mask = torch.ones([self.batch_size, self.min_size, self.max_size], device=torch_device)
labels = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
labels = []
for i in range(self.batch_size):
target = {}
target["class_labels"] = torch.randint(
high=self.num_labels, size=(self.n_targets,), device=torch_device
)
target["boxes"] = torch.rand(self.n_targets, 4, device=torch_device)
target["masks"] = torch.rand(self.n_targets, self.min_size, self.max_size, device=torch_device)
labels.append(target)
config = DetrConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
num_queries=self.num_queries,
num_labels=self.num_labels,
)
return config, pixel_values, pixel_mask, labels
def prepare_config_and_inputs_for_common(self):
config, pixel_values, pixel_mask, labels = self.prepare_config_and_inputs()
inputs_dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def create_and_check_detr_model(self, config, pixel_values, pixel_mask, labels):
model = DetrModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size)
)
def create_and_check_detr_object_detection_head_model(self, config, pixel_values, pixel_mask, labels):
model = DetrForObjectDetection(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
result = model(pixel_values=pixel_values, pixel_mask=pixel_mask, labels=labels)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1))
self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_queries, 4))
@require_timm
class DetrModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(
DetrModel,
DetrForObjectDetection,
DetrForSegmentation,
)
if is_timm_available()
else ()
)
is_encoder_decoder = True
test_torchscript = False
test_pruning = False
test_head_masking = False
test_missing_keys = False
# special case for head models
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ in ["DetrForObjectDetection", "DetrForSegmentation"]:
labels = []
for i in range(self.model_tester.batch_size):
target = {}
target["class_labels"] = torch.ones(
size=(self.model_tester.n_targets,), device=torch_device, dtype=torch.long
)
target["boxes"] = torch.ones(
self.model_tester.n_targets, 4, device=torch_device, dtype=torch.float
)
target["masks"] = torch.ones(
self.model_tester.n_targets,
self.model_tester.min_size,
self.model_tester.max_size,
device=torch_device,
dtype=torch.float,
)
labels.append(target)
inputs_dict["labels"] = labels
return inputs_dict
def setUp(self):
self.model_tester = DetrModelTester(self)
self.config_tester = ConfigTester(self, config_class=DetrConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_detr_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_model(*config_and_inputs)
def test_detr_object_detection_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_detr_object_detection_head_model(*config_and_inputs)
@unittest.skip(reason="DETR does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="DETR does not have a get_input_embeddings method")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DETR is not a generative model")
def test_generate_without_input_ids(self):
pass
@unittest.skip(reason="DETR does not use token embeddings")
def test_resize_tokens_embeddings(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
decoder_seq_length = self.model_tester.decoder_seq_length
encoder_seq_length = self.model_tester.encoder_seq_length
decoder_key_length = self.model_tester.decoder_seq_length
encoder_key_length = self.model_tester.encoder_seq_length
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
# Object Detection model returns pred_logits and pred_boxes
if model_class.__name__ == "DetrForObjectDetection":
correct_outlen += 2
# Panoptic Segmentation model returns pred_logits, pred_boxes, pred_masks
if model_class.__name__ == "DetrForSegmentation":
correct_outlen += 3
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# removed retain_grad and grad on decoder_hidden_states, as queries don't require grad
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_attentions = outputs.encoder_attentions[0]
encoder_hidden_states.retain_grad()
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
if model.config.is_encoder_decoder:
expected_arg_names = ["pixel_values", "pixel_mask"]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" in arg_names
else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
else:
expected_arg_names = ["pixel_values", "pixel_mask"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_different_timm_backbone(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# let's pick a random timm backbone
config.backbone = "tf_mobilenetv3_small_075"
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if model_class.__name__ == "DetrForObjectDetection":
expected_shape = (
self.model_tester.batch_size,
self.model_tester.num_queries,
self.model_tester.num_labels + 1,
)
self.assertEqual(outputs.logits.shape, expected_shape)
self.assertTrue(outputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
configs_no_init.init_xavier_std = 1e9
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
if "bbox_attention" in name and "bias" not in name:
self.assertLess(
100000,
abs(param.data.max().item()),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
TOLERANCE = 1e-4
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_timm
@require_vision
@slow
class DetrModelIntegrationTests(unittest.TestCase):
@cached_property
def default_feature_extractor(self):
return DetrFeatureExtractor.from_pretrained("facebook/detr-resnet-50") if is_vision_available() else None
def test_inference_no_head(self):
model = DetrModel.from_pretrained("facebook/detr-resnet-50").to(torch_device)
feature_extractor = self.default_feature_extractor
image = prepare_img()
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device)
with torch.no_grad():
outputs = model(**encoding)
expected_shape = torch.Size((1, 100, 256))
assert outputs.last_hidden_state.shape == expected_shape
expected_slice = torch.tensor(
[[0.0616, -0.5146, -0.4032], [-0.7629, -0.4934, -1.7153], [-0.4768, -0.6403, -0.7826]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_object_detection_head(self):
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50").to(torch_device)
feature_extractor = self.default_feature_extractor
image = prepare_img()
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-19.1194, -0.0893, -11.0154], [-17.3640, -1.8035, -14.0219], [-20.0461, -0.5837, -11.1060]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.4433, 0.5302, 0.8853], [0.5494, 0.2517, 0.0529], [0.4998, 0.5360, 0.9956]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
def test_inference_panoptic_segmentation_head(self):
model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50-panoptic").to(torch_device)
feature_extractor = self.default_feature_extractor
image = prepare_img()
encoding = feature_extractor(images=image, return_tensors="pt").to(torch_device)
pixel_values = encoding["pixel_values"].to(torch_device)
pixel_mask = encoding["pixel_mask"].to(torch_device)
with torch.no_grad():
outputs = model(pixel_values, pixel_mask)
expected_shape_logits = torch.Size((1, model.config.num_queries, model.config.num_labels + 1))
self.assertEqual(outputs.logits.shape, expected_shape_logits)
expected_slice_logits = torch.tensor(
[[-18.1565, -1.7568, -13.5029], [-16.8888, -1.4138, -14.1028], [-17.5709, -2.5080, -11.8654]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_shape_boxes = torch.Size((1, model.config.num_queries, 4))
self.assertEqual(outputs.pred_boxes.shape, expected_shape_boxes)
expected_slice_boxes = torch.tensor(
[[0.5344, 0.1789, 0.9285], [0.4420, 0.0572, 0.0875], [0.6630, 0.6887, 0.1017]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
expected_shape_masks = torch.Size((1, model.config.num_queries, 200, 267))
self.assertEqual(outputs.pred_masks.shape, expected_shape_masks)
expected_slice_masks = torch.tensor(
[[-7.7558, -10.8788, -11.9797], [-11.8881, -16.4329, -17.7451], [-14.7316, -19.7383, -20.3004]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_masks[0, 0, :3, :3], expected_slice_masks, atol=1e-4))

View File

@ -322,7 +322,7 @@ class ViTModelTest(ModelTesterMixin, unittest.TestCase):
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/cats.png")
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image

View File

@ -47,11 +47,26 @@ class ImageClassificationPipelineTests(unittest.TestCase):
"http://images.cocodataset.org/val2017/000000039769.jpg",
]
},
{"images": "tests/fixtures/coco.jpg"},
{"images": ["tests/fixtures/coco.jpg", "tests/fixtures/coco.jpg"]},
{"images": Image.open("tests/fixtures/coco.jpg")},
{"images": [Image.open("tests/fixtures/coco.jpg"), Image.open("tests/fixtures/coco.jpg")]},
{"images": [Image.open("tests/fixtures/coco.jpg"), "tests/fixtures/coco.jpg"]},
{"images": "./tests/fixtures/tests_samples/COCO/000000039769.png"},
{
"images": [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
},
{"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")},
{
"images": [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
]
},
{
"images": [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
},
]
def test_small_model_from_factory(self):

View File

@ -38,6 +38,9 @@ IGNORE_NON_TESTED = [
"BigBirdPegasusEncoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoder", # Building part of bigger (tested) model.
"BigBirdPegasusDecoderWrapper", # Building part of bigger (tested) model.
"DetrEncoder", # Building part of bigger (tested) model.
"DetrDecoder", # Building part of bigger (tested) model.
"DetrDecoderWrapper", # Building part of bigger (tested) model.
"M2M100Encoder", # Building part of bigger (tested) model.
"M2M100Decoder", # Building part of bigger (tested) model.
"Speech2TextEncoder", # Building part of bigger (tested) model.
@ -95,6 +98,7 @@ IGNORE_NON_AUTO_CONFIGURED = [
"CLIPVisionModel",
"FlaxCLIPTextModel",
"FlaxCLIPVisionModel",
"DetrForSegmentation",
"DPRReader",
"DPRSpanPredictor",
"FlaubertForQuestionAnswering",