[cleanup] Hoist ModelTester objects to top level (#4939)

Co-authored-by: Sam Shleifer <sshleifer@gmail.com>
This commit is contained in:
Amil Khare 2020-06-16 17:33:43 +05:30 committed by GitHub
parent 0c55a384f8
commit c852036b4a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 4721 additions and 5212 deletions

View File

@ -37,6 +37,226 @@ if is_torch_available():
from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class AlbertModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.embedding_size = 16
self.hidden_size = 36
self.num_hidden_layers = 6
self.num_hidden_groups = 6
self.num_attention_heads = 6
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
num_hidden_groups=self.num_hidden_groups,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_albert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores, sop_scores = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
sentence_order_label=sequence_labels,
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
"sop_scores": sop_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["sop_scores"].size()), [self.batch_size, config.num_labels])
self.check_loss_output(result)
def create_and_check_albert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_albert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_albert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = AlbertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
self.check_loss_output(result)
def create_and_check_albert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = AlbertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
self.check_loss_output(result)
def create_and_check_albert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = AlbertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
loss, logits = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch @require_torch
class AlbertModelTest(ModelTesterMixin, unittest.TestCase): class AlbertModelTest(ModelTesterMixin, unittest.TestCase):
@ -54,256 +274,8 @@ class AlbertModelTest(ModelTesterMixin, unittest.TestCase):
else () else ()
) )
class AlbertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=36,
num_hidden_layers=6,
num_hidden_groups=6,
num_attention_heads=6,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.num_hidden_groups = num_hidden_groups
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
num_hidden_groups=self.num_hidden_groups,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_albert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores, sop_scores = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
labels=token_labels,
sentence_order_label=sequence_labels,
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
"sop_scores": sop_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["sop_scores"].size()), [self.batch_size, config.num_labels])
self.check_loss_output(result)
def create_and_check_albert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_albert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = AlbertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_albert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = AlbertForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
self.check_loss_output(result)
def create_and_check_albert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = AlbertForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
)
self.check_loss_output(result)
def create_and_check_albert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = AlbertForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
loss, logits = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = AlbertModelTest.AlbertModelTester(self) self.model_tester = AlbertModelTester(self)
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -27,6 +27,140 @@ if is_torch_available():
from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLLMHeadModel from transformers import CTRLConfig, CTRLModel, CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLLMHeadModel
class CTRLModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
sequence_output, presents = model(input_ids)
result = {
"sequence_output": sequence_output,
"presents": presents,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertEqual(len(result["presents"]), config.n_layer)
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
return config, inputs_dict
@require_torch @require_torch
class CTRLModelTest(ModelTesterMixin, unittest.TestCase): class CTRLModelTest(ModelTesterMixin, unittest.TestCase):
@ -37,164 +171,8 @@ class CTRLModelTest(ModelTesterMixin, unittest.TestCase):
test_resize_embeddings = False test_resize_embeddings = False
test_head_masking = False test_head_masking = False
class CTRLModelTester(object):
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
sequence_output, presents = model(input_ids)
result = {
"sequence_output": sequence_output,
"presents": presents,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertEqual(len(result["presents"]), config.n_layer)
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = CTRLModelTest.CTRLModelTester(self) self.model_tester = CTRLModelTester(self)
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -34,27 +34,6 @@ if is_torch_available():
DistilBertForSequenceClassification, DistilBertForSequenceClassification,
) )
@require_torch
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
test_pruning = True
test_torchscript = True
test_resize_embeddings = True
test_head_masking = True
class DistilBertModelTester(object): class DistilBertModelTester(object):
def __init__( def __init__(
self, self,
@ -245,8 +224,29 @@ class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict return config, inputs_dict
@require_torch
class DistilBertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
test_pruning = True
test_torchscript = True
test_resize_embeddings = True
test_head_masking = True
def setUp(self): def setUp(self):
self.model_tester = DistilBertModelTest.DistilBertModelTester(self) self.model_tester = DistilBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
def test_config(self): def test_config(self):

View File

@ -36,6 +36,252 @@ if is_torch_available():
from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
class ElectraModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_electra_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraModel(config=config)
model.to(torch_device)
model.eval()
(sequence_output,) = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids)
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_electra_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_electra_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
self.check_loss_output(result)
def create_and_check_electra_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_electra_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
self.check_loss_output(result)
def create_and_check_electra_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch @require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase): class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
@ -52,279 +298,8 @@ class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
else () else ()
) )
class ElectraModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
config = ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_electra_model(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraModel(config=config)
model.to(torch_device)
model.eval()
(sequence_output,) = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids)
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_electra_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_electra_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
)
self.check_loss_output(result)
def create_and_check_electra_for_pretraining(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForPreTraining(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_electra_for_sequence_classification(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
config.num_labels = self.num_labels
model = ElectraForSequenceClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
self.check_loss_output(result)
def create_and_check_electra_for_question_answering(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
):
model = ElectraForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
fake_token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = ElectraModelTest.ElectraModelTester(self) self.model_tester = ElectraModelTester(self)
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -35,6 +35,281 @@ if is_torch_available():
from transformers.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class FlaubertModelTester(object):
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_lengths = True
self.use_token_type_ids = True
self.use_labels = True
self.gelu_activation = True
self.sinusoidal_embeddings = False
self.causal = False
self.asm = False
self.n_langs = 2
self.vocab_size = 99
self.n_special = 0
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 12
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.summary_type = "last"
self.use_proj = None
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
config = FlaubertConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_flaubert_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
outputs = model(input_ids, langs=token_type_ids)
outputs = model(input_ids)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_flaubert_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertWithLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_flaubert_simple_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
loss, start_logits, end_logits = outputs
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_flaubert_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
(total_loss,) = outputs
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
(total_loss,) = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
def create_and_check_flaubert_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForSequenceClassification(config)
model.to(torch_device)
model.eval()
(logits,) = model(input_ids)
loss, logits = model(input_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch @require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase): class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):
@ -50,316 +325,8 @@ class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):
else () else ()
) )
class FlaubertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_lengths=True,
use_token_type_ids=True,
use_labels=True,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=2,
vocab_size=99,
n_special=0,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
summary_type="last",
use_proj=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_lengths = use_input_lengths
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.asm = asm
self.n_langs = n_langs
self.vocab_size = vocab_size
self.n_special = n_special
self.summary_type = summary_type
self.causal = causal
self.use_proj = use_proj
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.n_langs = n_langs
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.summary_type = summary_type
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
config = FlaubertConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_flaubert_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
outputs = model(input_ids, langs=token_type_ids)
outputs = model(input_ids)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_flaubert_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertWithLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_flaubert_simple_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
loss, start_logits, end_logits = outputs
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_flaubert_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
(total_loss,) = outputs
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
(total_loss,) = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
def create_and_check_flaubert_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = FlaubertForSequenceClassification(config)
model.to(torch_device)
model.eval()
(logits,) = model(input_ids)
loss, logits = model(input_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = FlaubertModelTest.FlaubertModelTester(self) self.model_tester = FlaubertModelTester(self)
self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37) self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)
def test_config(self): def test_config(self):

View File

@ -34,6 +34,269 @@ if is_torch_available():
) )
class GPT2ModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0, 1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
sequence_output, presents = model(input_ids)
result = {
"sequence_output": sequence_output,
"presents": presents,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertEqual(len(result["presents"]), config.n_layer)
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
# first forward pass
output, past = model(input_ids, token_type_ids=token_type_ids)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_gpt2_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = self.seq_length // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1,
)
# get two different outputs
output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2LMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_double_lm_head_model(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = GPT2DoubleHeadsModel(config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
"labels": multiple_choice_inputs_ids,
}
loss, lm_logits, mc_logits, _ = model(**inputs)
result = {"loss": loss, "lm_logits": lm_logits, "mc_logits": mc_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(list(result["mc_logits"].size()), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch @require_torch
class GPT2ModelTest(ModelTesterMixin, unittest.TestCase): class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
@ -42,271 +305,8 @@ class GPT2ModelTest(ModelTesterMixin, unittest.TestCase):
(GPT2LMHeadModel,) if is_torch_available() else () (GPT2LMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
class GPT2ModelTester(object):
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
sequence_output, presents = model(input_ids)
result = {
"sequence_output": sequence_output,
"presents": presents,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertEqual(len(result["presents"]), config.n_layer)
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
# first forward pass
output, past = model(input_ids, token_type_ids=token_type_ids)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_gpt2_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = GPT2Model(config=config)
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = self.seq_length // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1,
)
# get two different outputs
output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = GPT2LMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, _ = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_double_lm_head_model(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = GPT2DoubleHeadsModel(config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
"labels": multiple_choice_inputs_ids,
}
loss, lm_logits, mc_logits, _ = model(**inputs)
result = {"loss": loss, "lm_logits": lm_logits, "mc_logits": mc_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()),
[self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(list(result["mc_logits"].size()), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = GPT2ModelTest.GPT2ModelTester(self) self.model_tester = GPT2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -36,56 +36,33 @@ if is_torch_available():
) )
class LongformerModelTester(object): class LongformerModelTester:
def __init__( def __init__(
self, self, parent,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
attention_window=4,
): ):
self.parent = parent self.parent = parent
self.batch_size = batch_size self.batch_size = 13
self.seq_length = seq_length self.seq_length = 7
self.is_training = is_training self.is_training = True
self.use_input_mask = use_input_mask self.use_input_mask = True
self.use_token_type_ids = use_token_type_ids self.use_token_type_ids = True
self.use_labels = use_labels self.use_labels = True
self.vocab_size = vocab_size self.vocab_size = 99
self.hidden_size = hidden_size self.hidden_size = 32
self.num_hidden_layers = num_hidden_layers self.num_hidden_layers = 5
self.num_attention_heads = num_attention_heads self.num_attention_heads = 4
self.intermediate_size = intermediate_size self.intermediate_size = 37
self.hidden_act = hidden_act self.hidden_act = "gelu"
self.hidden_dropout_prob = hidden_dropout_prob self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = attention_probs_dropout_prob self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = max_position_embeddings self.max_position_embeddings = 512
self.type_vocab_size = type_vocab_size self.type_vocab_size = 16
self.type_sequence_label_size = type_sequence_label_size self.type_sequence_label_size = 2
self.initializer_range = initializer_range self.initializer_range = 0.02
self.num_labels = num_labels self.num_labels = 3
self.num_choices = num_choices self.num_choices = 4
self.scope = scope self.scope = None
self.attention_window = attention_window self.attention_window = 4
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention # [num_attention_heads, encoder_seq_length, encoder_key_length], but LongformerSelfAttention

View File

@ -34,6 +34,139 @@ if is_torch_available():
) )
class OpenAIGPTModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids)
result = {"sequence_output": sequence_output}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTDoubleHeadsModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch @require_torch
class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase): class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
@ -44,161 +177,8 @@ class OpenAIGPTModelTest(ModelTesterMixin, unittest.TestCase):
(OpenAIGPTLMHeadModel,) if is_torch_available() else () (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
class OpenAIGPTModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
(sequence_output,) = model(input_ids)
result = {"sequence_output": sequence_output}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
model = OpenAIGPTDoubleHeadsModel(config)
model.to(torch_device)
model.eval()
loss, lm_logits, mc_logits = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
result = {"loss": loss, "lm_logits": lm_logits}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["lm_logits"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = OpenAIGPTModelTest.OpenAIGPTModelTester(self) self.model_tester = OpenAIGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -39,6 +39,183 @@ if is_torch_available():
from transformers.modeling_utils import create_position_ids_from_input_ids from transformers.modeling_utils import create_position_ids_from_input_ids
class RobertaModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_roberta_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_roberta_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_roberta_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RobertaForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
self.check_loss_output(result)
def create_and_check_roberta_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = RobertaForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
loss, logits = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
self.check_loss_output(result)
def create_and_check_roberta_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch @require_torch
class RobertaModelTest(ModelTesterMixin, unittest.TestCase): class RobertaModelTest(ModelTesterMixin, unittest.TestCase):
@ -55,210 +232,8 @@ class RobertaModelTest(ModelTesterMixin, unittest.TestCase):
else () else ()
) )
class RobertaModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_roberta_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaModel(config=config)
model.to(torch_device)
model.eval()
sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output,
"pooled_output": pooled_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].size()), [self.batch_size, self.hidden_size])
def create_and_check_roberta_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaForMaskedLM(config=config)
model.to(torch_device)
model.eval()
loss, prediction_scores = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_roberta_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RobertaForTokenClassification(config=config)
model.to(torch_device)
model.eval()
loss, logits = model(
input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
)
self.check_loss_output(result)
def create_and_check_roberta_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = RobertaForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
loss, logits = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
self.check_loss_output(result)
def create_and_check_roberta_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RobertaForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
loss, start_logits, end_logits = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = RobertaModelTest.RobertaModelTester(self) self.model_tester = RobertaModelTester(self)
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -30,6 +30,268 @@ if is_torch_available():
from transformers.tokenization_t5 import T5Tokenizer from transformers.tokenization_t5 import T5Tokenizer
class T5ModelTester:
def __init__(self, parent):
self.parent = parent
self.batch_size = 13
self.encoder_seq_length = 7
self.decoder_seq_length = 9
self.is_training = True
self.use_attention_mask = True
self.use_labels = True
self.vocab_size = 99
self.n_positions = 14
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.d_ff = 37
self.relative_attention_num_buckets = 8
self.dropout_rate = 0.1
self.initializer_factor = 0.002
self.eos_token_id = 1
self.pad_token_id = 0
self.decoder_start_token_id = 0
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def check_prepare_lm_labels_via_shift_left(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add casaul pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_t5_model(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
decoder_output, decoder_past, encoder_output = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
decoder_output, decoder_past, encoder_output = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
result = {
"encoder_output": encoder_output,
"decoder_output": decoder_output,
"decoder_past": decoder_past,
}
self.parent.assertListEqual(
list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size]
)
self.parent.assertEqual(len(decoder_past), 2)
# decoder_past[0] should correspond to encoder output
self.parent.assertTrue(torch.all(decoder_past[0][0] == encoder_output))
# There should be `num_layers` key value embeddings stored in decoder_past[1]
self.parent.assertEqual(len(decoder_past[1]), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple
self.parent.assertEqual(len(decoder_past[1][0]), 4)
def create_and_check_t5_with_lm_head(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5ForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
loss, prediction_scores, _, _ = outputs
self.parent.assertEqual(len(outputs), 4)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_t5_decoder_model_past(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config).get_decoder()
model.to(torch_device)
model.eval()
# first forward pass
output, past_key_value_states = model(input_ids, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_t5_decoder_model_attention_mask_past(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config).get_decoder()
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past_key_value_states = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states, attention_mask=attn_mask)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_t5_and_check_t5_generate_with_past_key_value_states(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5ForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_t5_model_fp16_forward(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.half()
model.eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)[0]
self.parent.assertFalse(torch.isnan(output).any().item())
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
@require_torch @require_torch
class T5ModelTest(ModelTesterMixin, unittest.TestCase): class T5ModelTest(ModelTesterMixin, unittest.TestCase):
@ -40,302 +302,8 @@ class T5ModelTest(ModelTesterMixin, unittest.TestCase):
test_resize_embeddings = False test_resize_embeddings = False
is_encoder_decoder = True is_encoder_decoder = True
class T5ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
is_training=True,
use_attention_mask=True,
use_labels=True,
vocab_size=99,
n_positions=14,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.scope = scope
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def check_prepare_lm_labels_via_shift_left(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add casaul pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_t5_model(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.eval()
decoder_output, decoder_past, encoder_output = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
decoder_output, decoder_past, encoder_output = model(
input_ids=input_ids, decoder_input_ids=decoder_input_ids
)
result = {
"encoder_output": encoder_output,
"decoder_output": decoder_output,
"decoder_past": decoder_past,
}
self.parent.assertListEqual(
list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size]
)
self.parent.assertEqual(len(decoder_past), 2)
# decoder_past[0] should correspond to encoder output
self.parent.assertTrue(torch.all(decoder_past[0][0] == encoder_output))
# There should be `num_layers` key value embeddings stored in decoder_past[1]
self.parent.assertEqual(len(decoder_past[1]), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple
self.parent.assertEqual(len(decoder_past[1][0]), 4)
def create_and_check_t5_with_lm_head(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5ForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
loss, prediction_scores, _, _ = outputs
self.parent.assertEqual(len(outputs), 4)
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size]
)
self.check_loss_output(result)
def create_and_check_t5_decoder_model_past(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config).get_decoder()
model.to(torch_device)
model.eval()
# first forward pass
output, past_key_value_states = model(input_ids, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_t5_decoder_model_attention_mask_past(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config).get_decoder()
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past_key_value_states = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0]
output_from_past = model(
next_tokens, past_key_value_states=past_key_value_states, attention_mask=attn_mask
)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_t5_and_check_t5_generate_with_past_key_value_states(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5ForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_t5_model_fp16_forward(
self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels,
):
model = T5Model(config=config)
model.to(torch_device)
model.half()
model.eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)[0]
self.parent.assertFalse(torch.isnan(output).any().item())
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = T5ModelTest.T5ModelTester(self) self.model_tester = T5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self): def test_config(self):

View File

@ -34,6 +34,186 @@ if is_tf_available():
) )
class TFAlbertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.embedding_size = 16
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_albert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertModel(config=config)
# inputs = {'input_ids': input_ids,
# 'attention_mask': input_mask,
# 'token_type_ids': token_type_ids}
# sequence_output, pooled_output = model(**inputs)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output, pooled_output = model(inputs)
inputs = [input_ids, input_mask]
sequence_output, pooled_output = model(inputs)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
"pooled_output": pooled_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFAlbertForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores, sop_scores = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
"sop_scores": sop_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["sop_scores"].shape), [self.batch_size, self.num_labels])
def create_and_check_albert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_albert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFAlbertForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def create_and_check_albert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase): class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
@ -49,187 +229,8 @@ class TFAlbertModelTest(TFModelTesterMixin, unittest.TestCase):
else () else ()
) )
class TFAlbertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
embedding_size=16,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = AlbertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_albert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertModel(config=config)
# inputs = {'input_ids': input_ids,
# 'attention_mask': input_mask,
# 'token_type_ids': token_type_ids}
# sequence_output, pooled_output = model(**inputs)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output, pooled_output = model(inputs)
inputs = [input_ids, input_mask]
sequence_output, pooled_output = model(inputs)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
"pooled_output": pooled_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
def create_and_check_albert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFAlbertForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores, sop_scores = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
"sop_scores": sop_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["sop_scores"].shape), [self.batch_size, self.num_labels])
def create_and_check_albert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_albert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFAlbertForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def create_and_check_albert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFAlbertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFAlbertModelTest.TFAlbertModelTester(self) self.model_tester = TFAlbertModelTester(self)
self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=AlbertConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -37,6 +37,221 @@ if is_tf_available():
) )
class TFBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_bert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output, pooled_output = model(inputs)
inputs = [input_ids, input_mask]
sequence_output, pooled_output = model(inputs)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
"pooled_output": pooled_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
def create_and_check_bert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_bert_for_next_sequence_prediction(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForNextSentencePrediction(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(seq_relationship_score,) = model(inputs)
result = {
"seq_relationship_score": seq_relationship_score.numpy(),
}
self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
def create_and_check_bert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores, seq_relationship_score = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
"seq_relationship_score": seq_relationship_score.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
def create_and_check_bert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFBertForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def create_and_check_bert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
def create_and_check_bert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFBertForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])
def create_and_check_bert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase): class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
@ -55,224 +270,8 @@ class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
else () else ()
) )
class TFBertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = BertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_bert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output, pooled_output = model(inputs)
inputs = [input_ids, input_mask]
sequence_output, pooled_output = model(inputs)
sequence_output, pooled_output = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
"pooled_output": pooled_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])
def create_and_check_bert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_bert_for_next_sequence_prediction(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForNextSentencePrediction(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(seq_relationship_score,) = model(inputs)
result = {
"seq_relationship_score": seq_relationship_score.numpy(),
}
self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
def create_and_check_bert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores, seq_relationship_score = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
"seq_relationship_score": seq_relationship_score.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
def create_and_check_bert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFBertForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def create_and_check_bert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
def create_and_check_bert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFBertForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
)
def create_and_check_bert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFBertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFBertModelTest.TFBertModelTester(self) self.model_tester = TFBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -28,163 +28,141 @@ if is_tf_available():
from transformers.modeling_tf_ctrl import TFCTRLModel, TFCTRLLMHeadModel, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_tf_ctrl import TFCTRLModel, TFCTRLLMHeadModel, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST
class TFCTRLModelTester(object):
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, None, input_mask] # None is the input for 'past'
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLLMHeadModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase): class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else () all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else () all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
class TFCTRLModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, None, input_mask] # None is the input for 'past'
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFCTRLLMHeadModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFCTRLModelTest.TFCTRLModelTester(self) self.model_tester = TFCTRLModelTester(self)
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37) self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -32,6 +32,128 @@ if is_tf_available():
) )
class TFDistilBertModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = False
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DistilBertConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_distilbert_model(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
outputs = model(inputs)
sequence_output = outputs[0]
inputs = [input_ids, input_mask]
(sequence_output,) = model(inputs)
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_distilbert_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_distilbert_for_question_answering(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def create_and_check_distilbert_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFDistilBertForSequenceClassification(config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase): class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
@ -50,151 +172,8 @@ class TFDistilBertModelTest(TFModelTesterMixin, unittest.TestCase):
test_resize_embeddings = True test_resize_embeddings = True
test_head_masking = True test_head_masking = True
class TFDistilBertModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = DistilBertConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_distilbert_model(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
outputs = model(inputs)
sequence_output = outputs[0]
inputs = [input_ids, input_mask]
(sequence_output,) = model(inputs)
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_distilbert_for_masked_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_distilbert_for_question_answering(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFDistilBertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def create_and_check_distilbert_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFDistilBertForSequenceClassification(config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFDistilBertModelTest.TFDistilBertModelTester(self) self.model_tester = TFDistilBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37) self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)
def test_config(self): def test_config(self):

View File

@ -32,6 +32,138 @@ if is_tf_available():
) )
class TFElectraModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_electra_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(sequence_output,) = model(inputs)
inputs = [input_ids, input_mask]
(sequence_output,) = model(inputs)
(sequence_output,) = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_electra_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_electra_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(list(result["prediction_scores"].shape), [self.batch_size, self.seq_length])
def create_and_check_electra_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFElectraForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase): class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):
@ -41,163 +173,8 @@ class TFElectraModelTest(TFModelTesterMixin, unittest.TestCase):
else () else ()
) )
class TFElectraModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = ElectraConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_electra_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(sequence_output,) = model(inputs)
inputs = [input_ids, input_mask]
(sequence_output,) = model(inputs)
(sequence_output,) = model(input_ids)
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_electra_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_electra_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFElectraForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(prediction_scores,) = model(inputs)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(list(result["prediction_scores"].shape), [self.batch_size, self.seq_length])
def create_and_check_electra_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFElectraForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFElectraModelTest.TFElectraModelTester(self) self.model_tester = TFElectraModelTester(self)
self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -34,268 +34,246 @@ if is_tf_available():
) )
class TFGPT2ModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
self.bos_token_id = self.vocab_size - 1
self.eos_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
sequence_output = model(inputs)[0]
inputs = [input_ids, None, input_mask] # None is the input for 'past'
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
)
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
# first forward pass
output, past = model(input_ids, token_type_ids=token_type_ids)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_gpt2_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = TFGPT2Model(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
# get two different outputs
output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2LMHeadModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_gpt2_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFGPT2DoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lm_logits, mc_logits = model(inputs)[:2]
result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
self.parent.assertListEqual(
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf @require_tf
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase): class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else () all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else () all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
class TFGPT2ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
sequence_output = model(inputs)[0]
inputs = [input_ids, None, input_mask] # None is the input for 'past'
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
)
def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2Model(config=config)
# first forward pass
output, past = model(input_ids, token_type_ids=token_type_ids)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)
# append to next input_ids and token_type_ids
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
output_from_no_past, _ = model(next_input_ids, token_type_ids=next_token_type_ids)
output_from_past, _ = model(next_tokens, token_type_ids=next_token_types, past=past)
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)
def create_and_check_gpt2_model_attention_mask_past(
self, config, input_ids, input_mask, head_mask, token_type_ids, *args
):
model = TFGPT2Model(config=config)
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
output, past = model(input_ids, attention_mask=attn_mask)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)
# get two different outputs
output_from_no_past, _ = model(next_input_ids, attention_mask=attn_mask)
output_from_past, _ = model(next_tokens, past=past, attention_mask=attn_mask)
# select random slice
random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)
def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFGPT2LMHeadModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size],
)
def create_and_check_gpt2_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFGPT2DoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lm_logits, mc_logits = model(inputs)[:2]
result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
self.parent.assertListEqual(
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self) self.model_tester = TFGPT2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37) self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -33,6 +33,155 @@ if is_tf_available():
) )
class TFOpenAIGPTModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_token_type_ids = True
self.use_input_mask = True
self.use_labels = True
self.use_mc_token_ids = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTLMHeadModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_openai_gpt_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFOpenAIGPTDoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lm_logits, mc_logits = model(inputs)[:2]
result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
self.parent.assertListEqual(
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase): class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
@ -43,179 +192,8 @@ class TFOpenAIGPTModelTest(TFModelTesterMixin, unittest.TestCase):
(TFOpenAIGPTLMHeadModel,) if is_tf_available() else () (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
class TFOpenAIGPTModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = OpenAIGPTConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
# intermediate_size=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
n_ctx=self.max_position_embeddings
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range
)
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = TFOpenAIGPTLMHeadModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
prediction_scores = model(inputs)[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_openai_gpt_double_head(
self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
):
model = TFOpenAIGPTDoubleHeadsModel(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"mc_token_ids": mc_token_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lm_logits, mc_logits = model(inputs)[:2]
result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
self.parent.assertListEqual(
list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFOpenAIGPTModelTest.TFOpenAIGPTModelTester(self) self.model_tester = TFOpenAIGPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
def test_config(self): def test_config(self):

View File

@ -36,6 +36,139 @@ if is_tf_available():
) )
class TFRobertaModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_roberta_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_roberta_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaForMaskedLM(config=config)
prediction_scores = model([input_ids, input_mask, token_type_ids])[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_roberta_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRobertaForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])
def create_and_check_roberta_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf @require_tf
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase): class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
@ -51,164 +184,8 @@ class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
else () else ()
) )
class TFRobertaModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RobertaConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_roberta_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
sequence_output = model(inputs)[0]
inputs = [input_ids, input_mask]
sequence_output = model(inputs)[0]
sequence_output = model(input_ids)[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_roberta_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaForMaskedLM(config=config)
prediction_scores = model([input_ids, input_mask, token_type_ids])[0]
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_roberta_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRobertaForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
)
def create_and_check_roberta_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRobertaForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFRobertaModelTest.TFRobertaModelTester(self) self.model_tester = TFRobertaModelTester(self)
self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)
def test_config(self): def test_config(self):

View File

@ -28,6 +28,186 @@ if is_tf_available():
from transformers import TFT5Model, TFT5ForConditionalGeneration, T5Tokenizer from transformers import TFT5Model, TFT5ForConditionalGeneration, T5Tokenizer
class TFT5ModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_labels = True
self.vocab_size = 99
self.n_positions = 14
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.d_ff = 37
self.relative_attention_num_buckets = 8
self.dropout_rate = 0.1
self.initializer_factor = 0.002
self.eos_token_id = 1
self.pad_token_id = 0
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
)
return (config, input_ids, input_mask, token_labels)
def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels):
model = TFT5Model(config=config)
inputs = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
decoder_output, decoder_past, encoder_output = model(inputs)
decoder_output, decoder_past, encoder_output = model(
input_ids, decoder_attention_mask=input_mask, decoder_input_ids=input_ids
)
result = {
"encoder_output": encoder_output.numpy(),
"decoder_past": decoder_past,
"decoder_output": decoder_output.numpy(),
}
self.parent.assertListEqual(
list(result["encoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertEqual(len(decoder_past), 2)
# decoder_past[0] should correspond to encoder output
self.parent.assertTrue(tf.reduce_all(tf.math.equal(decoder_past[0][0], encoder_output)))
# There should be `num_layers` key value embeddings stored in decoder_past[1]
self.parent.assertEqual(len(decoder_past[1]), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple
self.parent.assertEqual(len(decoder_past[1][0]), 4)
def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels):
model = TFT5ForConditionalGeneration(config=config)
inputs_dict = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
prediction_scores, _, _ = model(inputs_dict)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_t5_decoder_model_past(self, config, input_ids, decoder_input_ids, attention_mask):
model = TFT5Model(config=config).get_decoder()
input_ids = input_ids[:1, :]
self.batch_size = 1
# first forward pass
_, past_key_value_states = model(input_ids, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states)[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_t5_decoder_model_attention_mask_past(
self, config, input_ids, decoder_input_ids, attention_mask
):
model = TFT5Model(config=config).get_decoder()
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
_, past_key_value_states = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat([attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1,)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states, attention_mask=attn_mask)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).numpy().item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, token_labels) = config_and_inputs
inputs_dict = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
"use_cache": tf.convert_to_tensor([False]),
}
return config, inputs_dict
@require_tf @require_tf
class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase): class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
@ -35,207 +215,8 @@ class TFT5ModelTest(TFModelTesterMixin, unittest.TestCase):
all_model_classes = (TFT5Model, TFT5ForConditionalGeneration) if is_tf_available() else () all_model_classes = (TFT5Model, TFT5ForConditionalGeneration) if is_tf_available() else ()
all_generative_model_classes = (TFT5ForConditionalGeneration,) if is_tf_available() else () all_generative_model_classes = (TFT5ForConditionalGeneration,) if is_tf_available() else ()
class TFT5ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
n_positions=14,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_labels = None
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
)
return (config, input_ids, input_mask, token_labels)
def create_and_check_t5_model(self, config, input_ids, input_mask, token_labels):
model = TFT5Model(config=config)
inputs = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
decoder_output, decoder_past, encoder_output = model(inputs)
decoder_output, decoder_past, encoder_output = model(
input_ids, decoder_attention_mask=input_mask, decoder_input_ids=input_ids
)
result = {
"encoder_output": encoder_output.numpy(),
"decoder_past": decoder_past,
"decoder_output": decoder_output.numpy(),
}
self.parent.assertListEqual(
list(result["encoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertEqual(len(decoder_past), 2)
# decoder_past[0] should correspond to encoder output
self.parent.assertTrue(tf.reduce_all(tf.math.equal(decoder_past[0][0], encoder_output)))
# There should be `num_layers` key value embeddings stored in decoder_past[1]
self.parent.assertEqual(len(decoder_past[1]), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past[1] tuple
self.parent.assertEqual(len(decoder_past[1][0]), 4)
def create_and_check_t5_with_lm_head(self, config, input_ids, input_mask, token_labels):
model = TFT5ForConditionalGeneration(config=config)
inputs_dict = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
prediction_scores, _, _ = model(inputs_dict)
result = {
"prediction_scores": prediction_scores.numpy(),
}
self.parent.assertListEqual(
list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_t5_decoder_model_past(self, config, input_ids, decoder_input_ids, attention_mask):
model = TFT5Model(config=config).get_decoder()
input_ids = input_ids[:1, :]
self.batch_size = 1
# first forward pass
_, past_key_value_states = model(input_ids, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
output_from_no_past = model(next_input_ids)[0]
output_from_past = model(next_tokens, past_key_value_states=past_key_value_states)[0]
# select random slice
random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def create_and_check_t5_decoder_model_attention_mask_past(
self, config, input_ids, decoder_input_ids, attention_mask
):
model = TFT5Model(config=config).get_decoder()
# create attention mask
half_seq_length = self.seq_length // 2
attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)
# first forward pass
_, past_key_value_states = model(input_ids, attention_mask=attn_mask, use_cache=True)
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
condition = tf.transpose(
tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
)
input_ids = tf.where(condition, random_other_next_tokens, input_ids)
# append to next input_ids and attn_mask
next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
attn_mask = tf.concat([attn_mask, tf.ones((attn_mask.shape[0], 1), dtype=tf.int32)], axis=1,)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)[0]
output_from_past = model(
next_tokens, past_key_value_states=past_key_value_states, attention_mask=attn_mask
)[0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).numpy().item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
output_from_past_slice = output_from_past[:, 0, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, token_labels) = config_and_inputs
inputs_dict = {
"inputs": input_ids,
"decoder_input_ids": input_ids,
"decoder_attention_mask": input_mask,
"use_cache": tf.convert_to_tensor([False]),
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFT5ModelTest.TFT5ModelTester(self) self.model_tester = TFT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self): def test_config(self):

View File

@ -33,6 +33,135 @@ if is_tf_available():
) )
class TFTransfoXLModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.mem_len = 30
self.key_length = self.seq_length + self.mem_len
self.clamp_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.d_embed = 32
self.num_attention_heads = 4
self.d_head = 8
self.d_inner = 128
self.div_val = 2
self.num_hidden_layers = 5
self.scope = None
self.seed = 1
self.eos_token_id = 0
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
tf.random.set_seed(self.seed)
def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TFTransfoXLModel(config)
hidden_states_1, mems_1 = model(input_ids_1)
inputs = {"input_ids": input_ids_2, "mems": mems_1}
hidden_states_2, mems_2 = model(inputs)
result = {
"hidden_states_1": hidden_states_1.numpy(),
"mems_1": [mem.numpy() for mem in mems_1],
"hidden_states_2": hidden_states_2.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
}
self.parent.assertListEqual(
list(result["hidden_states_1"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["hidden_states_2"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TFTransfoXLLMHeadModel(config)
lm_logits_1, mems_1 = model(input_ids_1)
inputs = {"input_ids": input_ids_1, "labels": lm_labels}
_, mems_1 = model(inputs)
lm_logits_2, mems_2 = model([input_ids_2, mems_1])
inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}
_, mems_2 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"lm_logits_1": lm_logits_1.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
"lm_logits_2": lm_logits_2.numpy(),
}
self.parent.assertListEqual(
list(result["lm_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(result["lm_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_tf @require_tf
class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase): class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
@ -43,155 +172,8 @@ class TFTransfoXLModelTest(TFModelTesterMixin, unittest.TestCase):
test_torchscript = False test_torchscript = False
test_resize_embeddings = False test_resize_embeddings = False
class TFTransfoXLModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
mem_len=30,
clamp_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
d_embed=32,
num_attention_heads=4,
d_head=8,
d_inner=128,
div_val=2,
num_hidden_layers=5,
scope=None,
seed=1,
eos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.key_length = seq_length + mem_len
self.clamp_len = clamp_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.d_embed = d_embed
self.num_attention_heads = num_attention_heads
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.num_hidden_layers = num_hidden_layers
self.scope = scope
self.seed = seed
self.eos_token_id = eos_token_id
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
tf.random.set_seed(self.seed)
def create_and_check_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TFTransfoXLModel(config)
hidden_states_1, mems_1 = model(input_ids_1)
inputs = {"input_ids": input_ids_2, "mems": mems_1}
hidden_states_2, mems_2 = model(inputs)
result = {
"hidden_states_1": hidden_states_1.numpy(),
"mems_1": [mem.numpy() for mem in mems_1],
"hidden_states_2": hidden_states_2.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
}
self.parent.assertListEqual(
list(result["hidden_states_1"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["hidden_states_2"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TFTransfoXLLMHeadModel(config)
lm_logits_1, mems_1 = model(input_ids_1)
inputs = {"input_ids": input_ids_1, "labels": lm_labels}
_, mems_1 = model(inputs)
lm_logits_2, mems_2 = model([input_ids_2, mems_1])
inputs = {"input_ids": input_ids_1, "mems": mems_1, "labels": lm_labels}
_, mems_2 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"lm_logits_1": lm_logits_1.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
"lm_logits_2": lm_logits_2.numpy(),
}
self.parent.assertListEqual(
list(result["lm_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(result["lm_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFTransfoXLModelTest.TFTransfoXLModelTester(self) self.model_tester = TFTransfoXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37) self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
def test_config(self): def test_config(self):

View File

@ -35,6 +35,211 @@ if is_tf_available():
) )
class TFXLMModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_lengths = True
self.use_token_type_ids = True
self.use_labels = True
self.gelu_activation = True
self.sinusoidal_embeddings = False
self.causal = False
self.asm = False
self.n_langs = 2
self.vocab_size = 99
self.n_special = 0
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.summary_type = "last"
self.use_proj = True
self.scope = None
self.bos_token_id = 0
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLMConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def create_and_check_xlm_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMModel(config=config)
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
outputs = model(inputs)
inputs = [input_ids, input_mask]
outputs = model(inputs)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_xlm_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMWithLMHeadModel(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
outputs = model(inputs)
logits = outputs[0]
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_xlm_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMForQuestionAnsweringSimple(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def create_and_check_xlm_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMForSequenceClassification(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"langs": token_type_ids,
"lengths": input_lengths,
}
return config, inputs_dict
@require_tf @require_tf
class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase): class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
@ -47,244 +252,8 @@ class TFXLMModelTest(TFModelTesterMixin, unittest.TestCase):
(TFXLMWithLMHeadModel,) if is_tf_available() else () (TFXLMWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable ) # TODO (PVP): Check other models whether language generation is also applicable
class TFXLMModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_lengths=True,
use_token_type_ids=True,
use_labels=True,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=2,
vocab_size=99,
n_special=0,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
summary_type="last",
use_proj=True,
scope=None,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_lengths = use_input_lengths
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.asm = asm
self.n_langs = n_langs
self.vocab_size = vocab_size
self.n_special = n_special
self.summary_type = summary_type
self.causal = causal
self.use_proj = use_proj
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.n_langs = n_langs
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.summary_type = summary_type
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLMConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def create_and_check_xlm_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMModel(config=config)
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
outputs = model(inputs)
inputs = [input_ids, input_mask]
outputs = model(inputs)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output.numpy(),
}
self.parent.assertListEqual(
list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_xlm_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMWithLMHeadModel(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
outputs = model(inputs)
logits = outputs[0]
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_xlm_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMForQuestionAnsweringSimple(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths}
start_logits, end_logits = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
def create_and_check_xlm_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = TFXLMForSequenceClassification(config)
inputs = {"input_ids": input_ids, "lengths": input_lengths}
(logits,) = model(inputs)
result = {
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"langs": token_type_ids,
"lengths": input_lengths,
}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFXLMModelTest.TFXLMModelTester(self) self.model_tester = TFXLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
def test_config(self): def test_config(self):

View File

@ -37,6 +37,304 @@ if is_tf_available():
) )
class TFXLNetModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.mem_len = 10
# self.key_len = seq_length + mem_len
self.clamp_len = -1
self.reuse_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.num_attention_heads = 4
self.d_inner = 128
self.num_hidden_layers = 5
self.type_sequence_label_size = 2
self.untie_r = True
self.bi_data = False
self.same_length = False
self.initializer_range = 0.05
self.seed = 1
self.type_vocab_size = 2
self.bos_token_id = 1
self.eos_token_id = 2
self.pad_token_id = 5
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
# target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
lm_labels = None
is_impossible_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLNetConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data,
initializer_range=self.initializer_range,
num_labels=self.type_sequence_label_size,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
)
return (
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
)
def set_seed(self):
random.seed(self.seed)
tf.random.set_seed(self.seed)
def create_and_check_xlnet_base_model(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetModel(config)
inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
_, _ = model(inputs)
inputs = [input_ids_1, input_mask]
outputs, mems_1 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"outputs": outputs.numpy(),
}
config.mem_len = 0
model = TFXLNetModel(config)
no_mems_outputs = model(inputs)
self.parent.assertEqual(len(no_mems_outputs), 1)
self.parent.assertListEqual(
list(result["outputs"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_lm_head(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetLMHeadModel(config)
inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
all_logits_1, mems_1 = model(inputs_1)
inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
all_logits_2, mems_2 = model(inputs_2)
inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
logits, _ = model(inputs_3)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"all_logits_1": all_logits_1.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
"all_logits_2": all_logits_2.numpy(),
}
self.parent.assertListEqual(
list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_qa(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForQuestionAnsweringSimple(config)
inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
start_logits, end_logits, mems = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
"mems": [m.numpy() for m in mems],
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_sequence_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForSequenceClassification(config)
logits, mems_1 = model(input_ids_1)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_for_token_classification(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
config.num_labels = input_ids_1.shape[1]
model = TFXLNetForTokenClassification(config)
inputs = {
"input_ids": input_ids_1,
"attention_mask": input_mask,
# 'token_type_ids': token_type_ids
}
logits, mems_1 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_tf @require_tf
class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase): class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
@ -56,329 +354,8 @@ class TFXLNetModelTest(TFModelTesterMixin, unittest.TestCase):
) # TODO (PVP): Check other models whether language generation is also applicable ) # TODO (PVP): Check other models whether language generation is also applicable
test_pruning = False test_pruning = False
class TFXLNetModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
mem_len=10,
clamp_len=-1,
reuse_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
num_attention_heads=4,
d_inner=128,
num_hidden_layers=5,
type_sequence_label_size=2,
untie_r=True,
bi_data=False,
same_length=False,
initializer_range=0.05,
seed=1,
type_vocab_size=2,
bos_token_id=1,
eos_token_id=2,
pad_token_id=5,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
# self.key_len = seq_length + mem_len
self.clamp_len = clamp_len
self.reuse_len = reuse_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.d_inner = d_inner
self.num_hidden_layers = num_hidden_layers
self.bi_data = bi_data
self.untie_r = untie_r
self.same_length = same_length
self.initializer_range = initializer_range
self.seed = seed
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.eos_token_id = eos_token_id
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2, dtype=tf.float32)
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = tf.zeros((self.batch_size, self.seq_length + 1, self.seq_length), dtype=tf.float32)
perm_mask_last = tf.ones((self.batch_size, self.seq_length + 1, 1), dtype=tf.float32)
perm_mask = tf.concat([perm_mask, perm_mask_last], axis=-1)
# perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = tf.zeros((self.batch_size, 1, self.seq_length), dtype=tf.float32)
target_mapping_last = tf.ones((self.batch_size, 1, 1), dtype=tf.float32)
target_mapping = tf.concat([target_mapping, target_mapping_last], axis=-1)
# target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
lm_labels = None
is_impossible_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32)
config = XLNetConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data,
initializer_range=self.initializer_range,
num_labels=self.type_sequence_label_size,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
)
return (
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
)
def set_seed(self):
random.seed(self.seed)
tf.random.set_seed(self.seed)
def create_and_check_xlnet_base_model(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetModel(config)
inputs = {"input_ids": input_ids_1, "input_mask": input_mask, "token_type_ids": segment_ids}
_, _ = model(inputs)
inputs = [input_ids_1, input_mask]
outputs, mems_1 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"outputs": outputs.numpy(),
}
config.mem_len = 0
model = TFXLNetModel(config)
no_mems_outputs = model(inputs)
self.parent.assertEqual(len(no_mems_outputs), 1)
self.parent.assertListEqual(
list(result["outputs"].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_lm_head(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetLMHeadModel(config)
inputs_1 = {"input_ids": input_ids_1, "token_type_ids": segment_ids}
all_logits_1, mems_1 = model(inputs_1)
inputs_2 = {"input_ids": input_ids_2, "mems": mems_1, "token_type_ids": segment_ids}
all_logits_2, mems_2 = model(inputs_2)
inputs_3 = {"input_ids": input_ids_q, "perm_mask": perm_mask, "target_mapping": target_mapping}
logits, _ = model(inputs_3)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"all_logits_1": all_logits_1.numpy(),
"mems_2": [mem.numpy() for mem in mems_2],
"all_logits_2": all_logits_2.numpy(),
}
self.parent.assertListEqual(
list(result["all_logits_1"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(result["all_logits_2"].shape), [self.batch_size, self.seq_length, self.vocab_size]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_qa(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForQuestionAnsweringSimple(config)
inputs = {"input_ids": input_ids_1, "attention_mask": input_mask, "token_type_ids": segment_ids}
start_logits, end_logits, mems = model(inputs)
result = {
"start_logits": start_logits.numpy(),
"end_logits": end_logits.numpy(),
"mems": [m.numpy() for m in mems],
}
self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_sequence_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
model = TFXLNetForSequenceClassification(config)
logits, mems_1 = model(input_ids_1)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"logits": logits.numpy(),
}
self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.type_sequence_label_size])
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_for_token_classification(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
):
config.num_labels = input_ids_1.shape[1]
model = TFXLNetForTokenClassification(config)
inputs = {
"input_ids": input_ids_1,
"attention_mask": input_mask,
# 'token_type_ids': token_type_ids
}
logits, mems_1 = model(inputs)
result = {
"mems_1": [mem.numpy() for mem in mems_1],
"logits": logits.numpy(),
}
self.parent.assertListEqual(
list(result["logits"].shape), [self.batch_size, self.seq_length, config.num_labels]
)
self.parent.assertListEqual(
list(list(mem.shape) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = TFXLNetModelTest.TFXLNetModelTester(self) self.model_tester = TFXLNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37) self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
def test_config(self): def test_config(self):

View File

@ -29,6 +29,137 @@ if is_torch_available():
from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_transfo_xl import TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST
class TransfoXLModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.mem_len = 30
self.key_length = self.seq_length + self.mem_len
self.clamp_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.d_embed = 32
self.num_attention_heads = 4
self.d_head = 8
self.d_inner = 128
self.div_val = 2
self.num_hidden_layers = 5
self.scope = None
self.seed = 1
self.eos_token_id = 0
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
hidden_states_2, mems_2 = model(input_ids_2, mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1, mems_1 = model(input_ids_1)
loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
outputs = {
"loss_1": loss_1,
"mems_1": mems_1,
"lm_logits_1": lm_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"lm_logits_2": lm_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length - 1])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length - 1])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_torch @require_torch
class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase): class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
@ -38,155 +169,6 @@ class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
test_torchscript = False test_torchscript = False
test_resize_embeddings = True test_resize_embeddings = True
class TransfoXLModelTester(object):
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
mem_len=30,
clamp_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
d_embed=32,
num_attention_heads=4,
d_head=8,
d_inner=128,
div_val=2,
num_hidden_layers=5,
scope=None,
seed=1,
eos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
self.key_length = seq_length + mem_len
self.clamp_len = clamp_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.d_embed = d_embed
self.num_attention_heads = num_attention_heads
self.d_head = d_head
self.d_inner = d_inner
self.div_val = div_val
self.num_hidden_layers = num_hidden_layers
self.scope = scope
self.seed = seed
self.eos_token_id = eos_token_id
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = TransfoXLConfig(
vocab_size=self.vocab_size,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
cutoffs=self.cutoffs,
d_model=self.hidden_size,
d_embed=self.d_embed,
n_head=self.num_attention_heads,
d_head=self.d_head,
d_inner=self.d_inner,
div_val=self.div_val,
n_layer=self.num_hidden_layers,
eos_token_id=self.eos_token_id,
)
return (config, input_ids_1, input_ids_2, lm_labels)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLModel(config)
model.to(torch_device)
model.eval()
hidden_states_1, mems_1 = model(input_ids_1)
hidden_states_2, mems_2 = model(input_ids_2, mems_1)
outputs = {
"hidden_states_1": hidden_states_1,
"mems_1": mems_1,
"hidden_states_2": hidden_states_2,
"mems_2": mems_2,
}
return outputs
def check_transfo_xl_model_output(self, result):
self.parent.assertListEqual(
list(result["hidden_states_1"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(result["hidden_states_2"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, lm_labels):
model = TransfoXLLMHeadModel(config)
model.to(torch_device)
model.eval()
lm_logits_1, mems_1 = model(input_ids_1)
loss_1, _, mems_1 = model(input_ids_1, labels=lm_labels)
lm_logits_2, mems_2 = model(input_ids_2, mems=mems_1)
loss_2, _, mems_2 = model(input_ids_2, labels=lm_labels, mems=mems_1)
outputs = {
"loss_1": loss_1,
"mems_1": mems_1,
"lm_logits_1": lm_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"lm_logits_2": lm_logits_2,
}
return outputs
def check_transfo_xl_lm_head_output(self, result):
self.parent.assertListEqual(list(result["loss_1"].size()), [self.batch_size, self.seq_length - 1])
self.parent.assertListEqual(
list(result["lm_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(list(result["loss_2"].size()), [self.batch_size, self.seq_length - 1])
self.parent.assertListEqual(
list(result["lm_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids_1, input_ids_2, lm_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
def check_cutoffs_and_n_token( def check_cutoffs_and_n_token(
self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size self, copied_cutoffs, layer, model_embed, model, model_class, resized_value, vocab_size
): ):
@ -210,7 +192,7 @@ class TransfoXLModelTest(ModelTesterMixin, unittest.TestCase):
self.assertEqual(model.crit.n_token, vocab_size + resized_value) self.assertEqual(model.crit.n_token, vocab_size + resized_value)
def setUp(self): def setUp(self):
self.model_tester = TransfoXLModelTest.TransfoXLModelTester(self) self.model_tester = TransfoXLModelTester(self)
self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37) self.config_tester = ConfigTester(self, config_class=TransfoXLConfig, d_embed=37)
def test_config(self): def test_config(self):

View File

@ -37,6 +37,306 @@ if is_torch_available():
from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
class XLMModelTester:
def __init__(
self, parent,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_lengths = True
self.use_token_type_ids = True
self.use_labels = True
self.gelu_activation = True
self.sinusoidal_embeddings = False
self.causal = False
self.asm = False
self.n_langs = 2
self.vocab_size = 99
self.n_special = 0
self.hidden_size = 32
self.num_hidden_layers = 5
self.num_attention_heads = 4
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.summary_type = "last"
self.use_proj = True
self.scope = None
self.bos_token_id = 0
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
config = XLMConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_xlm_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
outputs = model(input_ids, langs=token_type_ids)
outputs = model(input_ids)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_xlm_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMWithLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])
def create_and_check_xlm_simple_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
loss, start_logits, end_logits = outputs
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_xlm_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
(total_loss,) = outputs
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
(total_loss,) = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
def create_and_check_xlm_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
(logits,) = model(input_ids)
loss, logits = model(input_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])
def create_and_check_xlm_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
config.num_labels = self.num_labels
model = XLMForTokenClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
@require_torch @require_torch
class XLMModelTest(ModelTesterMixin, unittest.TestCase): class XLMModelTest(ModelTesterMixin, unittest.TestCase):
@ -55,345 +355,8 @@ class XLMModelTest(ModelTesterMixin, unittest.TestCase):
(XLMWithLMHeadModel,) if is_torch_available() else () (XLMWithLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable ) # TODO (PVP): Check other models whether language generation is also applicable
class XLMModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_lengths=True,
use_token_type_ids=True,
use_labels=True,
gelu_activation=True,
sinusoidal_embeddings=False,
causal=False,
asm=False,
n_langs=2,
vocab_size=99,
n_special=0,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
summary_type="last",
use_proj=True,
scope=None,
bos_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_lengths = use_input_lengths
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.gelu_activation = gelu_activation
self.sinusoidal_embeddings = sinusoidal_embeddings
self.asm = asm
self.n_langs = n_langs
self.vocab_size = vocab_size
self.n_special = n_special
self.summary_type = summary_type
self.causal = causal
self.use_proj = use_proj
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.n_langs = n_langs
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.summary_type = summary_type
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_lengths = None
if self.use_input_lengths:
input_lengths = (
ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)
sequence_labels = None
token_labels = None
is_impossible_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
config = XLMConfig(
vocab_size=self.vocab_size,
n_special=self.n_special,
emb_dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
gelu_activation=self.gelu_activation,
sinusoidal_embeddings=self.sinusoidal_embeddings,
asm=self.asm,
causal=self.causal,
n_langs=self.n_langs,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
summary_type=self.summary_type,
use_proj=self.use_proj,
bos_token_id=self.bos_token_id,
)
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_xlm_model(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMModel(config=config)
model.to(torch_device)
model.eval()
outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
outputs = model(input_ids, langs=token_type_ids)
outputs = model(input_ids)
sequence_output = outputs[0]
result = {
"sequence_output": sequence_output,
}
self.parent.assertListEqual(
list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_xlm_lm_head(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMWithLMHeadModel(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_xlm_simple_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForQuestionAnsweringSimple(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
loss, start_logits, end_logits = outputs
result = {
"loss": loss,
"start_logits": start_logits,
"end_logits": end_logits,
}
self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
self.check_loss_output(result)
def create_and_check_xlm_qa(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids)
start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
(total_loss,) = outputs
outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
(total_loss,) = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
def create_and_check_xlm_sequence_classif(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
model = XLMForSequenceClassification(config)
model.to(torch_device)
model.eval()
(logits,) = model(input_ids)
loss, logits = model(input_ids, labels=sequence_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size]
)
def create_and_check_xlm_for_token_classification(
self,
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
):
config.num_labels = self.num_labels
model = XLMForTokenClassification(config)
model.to(torch_device)
model.eval()
loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
result = {
"loss": loss,
"logits": logits,
}
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels]
)
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
input_mask,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = XLMModelTest.XLMModelTester(self) self.model_tester = XLMModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
def test_config(self): def test_config(self):

View File

@ -39,6 +39,415 @@ if is_torch_available():
from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.modeling_xlnet import XLNET_PRETRAINED_MODEL_ARCHIVE_LIST
class XLNetModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
mem_len=10,
clamp_len=-1,
reuse_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
num_attention_heads=4,
d_inner=128,
num_hidden_layers=5,
type_sequence_label_size=2,
untie_r=True,
bi_data=False,
same_length=False,
initializer_range=0.05,
seed=1,
type_vocab_size=2,
bos_token_id=1,
eos_token_id=2,
pad_token_id=5,
num_choices=4,
):
self.parent = parent
self.batch_size = 14
self.seq_length = 7
self.mem_len = 10
# self.key_len = seq_length + mem_len
self.clamp_len = -1
self.reuse_len = 15
self.is_training = True
self.use_labels = True
self.vocab_size = 99
self.cutoffs = [10, 50, 80]
self.hidden_size = 32
self.num_attention_heads = 4
self.d_inner = 128
self.num_hidden_layers = 5
self.type_sequence_label_size = 2
self.untie_r = True
self.bi_data = False
self.same_length = False
self.initializer_range = 0.05
self.seed = 1
self.type_vocab_size = 2
self.bos_token_id = 1
self.eos_token_id = 2
self.pad_token_id = 5
self.num_choices = 4
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = torch.zeros(
self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros(self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,)
target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
lm_labels = None
is_impossible_labels = None
token_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = XLNetConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data,
initializer_range=self.initializer_range,
num_labels=self.type_sequence_label_size,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
)
return (
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_and_check_xlnet_base_model(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _ = model(input_ids_1, input_mask=input_mask)
_, _ = model(input_ids_1, attention_mask=input_mask)
_, _ = model(input_ids_1, token_type_ids=segment_ids)
outputs, mems_1 = model(input_ids_1)
result = {
"mems_1": mems_1,
"outputs": outputs,
}
config.mem_len = 0
model = XLNetModel(config)
model.to(torch_device)
model.eval()
no_mems_outputs = model(input_ids_1)
self.parent.assertEqual(len(no_mems_outputs), 1)
self.parent.assertListEqual(
list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_base_model_with_att_output(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _, attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)
self.parent.assertEqual(len(attentions), config.n_layer)
self.parent.assertIsInstance(attentions[0], tuple)
self.parent.assertEqual(len(attentions[0]), 2)
self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)
def create_and_check_xlnet_lm_head(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetLMHeadModel(config)
model.to(torch_device)
model.eval()
loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
loss_2, all_logits_2, mems_2 = model(input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1)
logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
result = {
"loss_1": loss_1,
"mems_1": mems_1,
"all_logits_1": all_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"all_logits_2": all_logits_2,
}
self.parent.assertListEqual(list(result["loss_1"].size()), [])
self.parent.assertListEqual(
list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(list(result["loss_2"].size()), [])
self.parent.assertListEqual(
list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_qa(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids_1)
(start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems,) = outputs
outputs = model(
input_ids_1,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids_1,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
total_loss, mems = outputs
outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)
total_loss, mems = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
"mems": mems,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top],
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top],
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_token_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForTokenClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
loss, logits, mems_1 = model(input_ids_1, labels=token_labels)
result = {
"loss": loss,
"mems_1": mems_1,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_sequence_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForSequenceClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)
result = {
"loss": loss,
"mems_1": mems_1,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
@require_torch @require_torch
class XLNetModelTest(ModelTesterMixin, unittest.TestCase): class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
@ -59,421 +468,8 @@ class XLNetModelTest(ModelTesterMixin, unittest.TestCase):
) # TODO (PVP): Check other models whether language generation is also applicable ) # TODO (PVP): Check other models whether language generation is also applicable
test_pruning = False test_pruning = False
class XLNetModelTester(object):
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
mem_len=10,
clamp_len=-1,
reuse_len=15,
is_training=True,
use_labels=True,
vocab_size=99,
cutoffs=[10, 50, 80],
hidden_size=32,
num_attention_heads=4,
d_inner=128,
num_hidden_layers=5,
type_sequence_label_size=2,
untie_r=True,
bi_data=False,
same_length=False,
initializer_range=0.05,
seed=1,
type_vocab_size=2,
bos_token_id=1,
eos_token_id=2,
pad_token_id=5,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.mem_len = mem_len
# self.key_len = seq_length + mem_len
self.clamp_len = clamp_len
self.reuse_len = reuse_len
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.cutoffs = cutoffs
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.d_inner = d_inner
self.num_hidden_layers = num_hidden_layers
self.bi_data = bi_data
self.untie_r = untie_r
self.same_length = same_length
self.initializer_range = initializer_range
self.seed = seed
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.eos_token_id = eos_token_id
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids_1 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids_2 = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
segment_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()
input_ids_q = ids_tensor([self.batch_size, self.seq_length + 1], self.vocab_size)
perm_mask = torch.zeros(
self.batch_size, self.seq_length + 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
)
perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
target_mapping = torch.zeros(
self.batch_size, 1, self.seq_length + 1, dtype=torch.float, device=torch_device,
)
target_mapping[:, 0, -1] = 1.0 # predict last token
sequence_labels = None
lm_labels = None
is_impossible_labels = None
token_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
is_impossible_labels = ids_tensor([self.batch_size], 2).float()
token_labels = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
config = XLNetConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
n_head=self.num_attention_heads,
d_inner=self.d_inner,
n_layer=self.num_hidden_layers,
untie_r=self.untie_r,
mem_len=self.mem_len,
clamp_len=self.clamp_len,
same_length=self.same_length,
reuse_len=self.reuse_len,
bi_data=self.bi_data,
initializer_range=self.initializer_range,
num_labels=self.type_sequence_label_size,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
eos_token_id=self.eos_token_id,
)
return (
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
)
def set_seed(self):
random.seed(self.seed)
torch.manual_seed(self.seed)
def create_and_check_xlnet_base_model(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _ = model(input_ids_1, input_mask=input_mask)
_, _ = model(input_ids_1, attention_mask=input_mask)
_, _ = model(input_ids_1, token_type_ids=segment_ids)
outputs, mems_1 = model(input_ids_1)
result = {
"mems_1": mems_1,
"outputs": outputs,
}
config.mem_len = 0
model = XLNetModel(config)
model.to(torch_device)
model.eval()
no_mems_outputs = model(input_ids_1)
self.parent.assertEqual(len(no_mems_outputs), 1)
self.parent.assertListEqual(
list(result["outputs"].size()), [self.batch_size, self.seq_length, self.hidden_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_base_model_with_att_output(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetModel(config)
model.to(torch_device)
model.eval()
_, _, attentions = model(input_ids_1, target_mapping=target_mapping, output_attentions=True)
self.parent.assertEqual(len(attentions), config.n_layer)
self.parent.assertIsInstance(attentions[0], tuple)
self.parent.assertEqual(len(attentions[0]), 2)
self.parent.assertTrue(attentions[0][0].shape, attentions[0][0].shape)
def create_and_check_xlnet_lm_head(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetLMHeadModel(config)
model.to(torch_device)
model.eval()
loss_1, all_logits_1, mems_1 = model(input_ids_1, token_type_ids=segment_ids, labels=lm_labels)
loss_2, all_logits_2, mems_2 = model(
input_ids_2, token_type_ids=segment_ids, labels=lm_labels, mems=mems_1
)
logits, _ = model(input_ids_q, perm_mask=perm_mask, target_mapping=target_mapping)
result = {
"loss_1": loss_1,
"mems_1": mems_1,
"all_logits_1": all_logits_1,
"loss_2": loss_2,
"mems_2": mems_2,
"all_logits_2": all_logits_2,
}
self.parent.assertListEqual(list(result["loss_1"].size()), [])
self.parent.assertListEqual(
list(result["all_logits_1"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
self.parent.assertListEqual(list(result["loss_2"].size()), [])
self.parent.assertListEqual(
list(result["all_logits_2"].size()), [self.batch_size, self.seq_length, self.vocab_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_2"]),
[[self.mem_len, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_qa(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForQuestionAnswering(config)
model.to(torch_device)
model.eval()
outputs = model(input_ids_1)
(start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems,) = outputs
outputs = model(
input_ids_1,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
p_mask=input_mask,
)
outputs = model(
input_ids_1,
start_positions=sequence_labels,
end_positions=sequence_labels,
cls_index=sequence_labels,
is_impossible=is_impossible_labels,
)
total_loss, mems = outputs
outputs = model(input_ids_1, start_positions=sequence_labels, end_positions=sequence_labels,)
total_loss, mems = outputs
result = {
"loss": total_loss,
"start_top_log_probs": start_top_log_probs,
"start_top_index": start_top_index,
"end_top_log_probs": end_top_log_probs,
"end_top_index": end_top_index,
"cls_logits": cls_logits,
"mems": mems,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top],
)
self.parent.assertListEqual(
list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top],
)
self.parent.assertListEqual(
list(result["end_top_log_probs"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(
list(result["end_top_index"].size()),
[self.batch_size, model.config.start_n_top * model.config.end_n_top],
)
self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_token_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForTokenClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
loss, logits, mems_1 = model(input_ids_1, labels=token_labels)
result = {
"loss": loss,
"mems_1": mems_1,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.seq_length, self.type_sequence_label_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def create_and_check_xlnet_sequence_classif(
self,
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
):
model = XLNetForSequenceClassification(config)
model.to(torch_device)
model.eval()
logits, mems_1 = model(input_ids_1)
loss, logits, mems_1 = model(input_ids_1, labels=sequence_labels)
result = {
"loss": loss,
"mems_1": mems_1,
"logits": logits,
}
self.parent.assertListEqual(list(result["loss"].size()), [])
self.parent.assertListEqual(
list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size],
)
self.parent.assertListEqual(
list(list(mem.size()) for mem in result["mems_1"]),
[[self.seq_length, self.batch_size, self.hidden_size]] * self.num_hidden_layers,
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids_1,
input_ids_2,
input_ids_q,
perm_mask,
input_mask,
target_mapping,
segment_ids,
lm_labels,
sequence_labels,
is_impossible_labels,
token_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids_1}
return config, inputs_dict
def setUp(self): def setUp(self):
self.model_tester = XLNetModelTest.XLNetModelTester(self) self.model_tester = XLNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37) self.config_tester = ConfigTester(self, config_class=XLNetConfig, d_inner=37)
def test_config(self): def test_config(self):