[time series] Add PatchTST (#25927)

* Initial commit of PatchTST model classes

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* Add PatchTSTForPretraining

* update to include classification

Co-authored-by: Phanwadee Sinthong <phsinthong@gmail.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>

* clean up auto files

* Add PatchTSTForPrediction

* Fix relative import

* Replace original PatchTSTEncoder with ChannelAttentionPatchTSTEncoder

* temporary adding absolute path + add PatchTSTForForecasting class

* Update base PatchTSTModel + Unittest

* Update ForecastHead to use the config class

* edit cv_random_masking, add mask to model output

* Update configuration_patchtst.py

* add masked_loss to the pretraining

* add PatchEmbeddings

* Update configuration_patchtst.py

* edit loss which considers mask in the pretraining

* remove patch_last option

* Add commits from internal repo

* Update ForecastHead

* Add model weight initilization + unittest

* Update PatchTST unittest to use local import

* PatchTST integration tests for pretraining and prediction

* Added PatchTSTForRegression + update unittest to include label generation

* Revert unrelated model test file

* Combine similar output classes

* update PredictionHead

* Update configuration_patchtst.py

* Add Revin

* small edit to PatchTSTModelOutputWithNoAttention

* Update modeling_patchtst.py

* Updating integration test for forecasting

* Fix unittest after class structure changed

* docstring updates

* change input_size to num_input_channels

* more formatting

* Remove some unused params

* Add a comment for pretrained models

* add channel_attention option

add channel_attention option and remove unused positional encoders.

* Update PatchTST models to use HF's MultiHeadAttention module

* Update paper + github urls

* Fix hidden_state return value

* Update integration test to use PatchTSTForForecasting

* Adding dataclass decorator for model output classes

* Run fixup script

* Rename model repos for integration test

* edit argument explanation

* change individual option to shared_projection

* style

* Rename integration test + import cleanup

* Fix outpu_hidden_states return value

* removed unused mode

* added std, mean and nops scaler

* add initial distributional loss for predition

* fix typo in docs

* add generate function

* formatting

* add num_parallel_samples

* Fix a typo

* copy weighted_average function, edit PredictionHead

* edit PredictionHead

* add distribution head to forecasting

* formatting

* Add generate function for forecasting

* Add generate function to prediction task

* formatting

* use argsort

* add past_observed_mask ordering

* fix arguments

* docs

* add back test_model_outputs_equivalence test

* formatting

* cleanup

* formatting

* use ACT2CLS

* formatting

* fix add_start_docstrings decorator

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* add distribution head and generate function to regression task

add distribution head and generate function to regression task. Also made add PatchTSTForForecastingOutput,  PatchTSTForRegressionOutput.

* fix typos

* add forecast_masking

* fixed tests

* use set_seed

* fix doc test

* formatting

* Update docs/source/en/model_doc/patchtst.md

Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>

* better var names

* rename PatchTSTTranspose

* fix argument names and docs string

* remove compute_num_patches and unused class

* remove assert

* renamed to PatchTSTMasking

* use num_labels for classification

* use num_labels

* use default num_labels from super class

* move model_type after docstring

* renamed PatchTSTForMaskPretraining

* bs -> batch_size

* more review fixes

* use hidden_state

* rename encoder layer and block class

* remove commented seed_number

* edit docstring

* Add docstring

* formatting

* use past_observed_mask

* doc suggestion

* make fix-copies

* use Args:

* add docstring

* add docstring

* change some variable names and add PatchTST before some class names

* formatting

* fix argument types

* fix tests

* change x variable to patch_input

* format

* formatting

* fix-copies

* Update tests/models/patchtst/test_modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* move loss to forward

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Update src/transformers/models/patchtst/modeling_patchtst.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* formatting

* fix a bug when pre_norm is set to True

* output_hidden_states is set to False as default

* set pre_norm=True as default

* format docstring

* format

* output_hidden_states is None by default

* add missing docs

* better var names

* docstring: remove default to False in output_hidden_states

* change labels name to target_values in regression task

* format

* fix tests

* change to forecast_mask_ratios and random_mask_ratio

* change mask names

* change future_values to target_values param in the prediction class

* remove nn.Sequential and make PatchTSTBatchNorm class

* black

* fix argument name for prediction

* add output_attentions option

* add output_attentions to PatchTSTEncoder

* formatting

* Add attention output option to all classes

* Remove PatchTSTEncoderBlock

* create PatchTSTEmbedding class

* use config in PatchTSTPatchify

* Use config in PatchTSTMasking class

* add channel_attn_weights

* Add PatchTSTScaler class

* add output_attentions arg to test function

* format

* Update doc with image patchtst.md

* fix-copies

* rename Forecast <-> Prediction

* change name of a few parameters to match with PatchTSMixer.

* Remove *ForForecasting class to match with other time series models.

* make style

* Remove PatchTSTForForecasting in the test

* remove PatchTSTForForecastingOutput class

* change test_forecast_head to test_prediction_head

* style

* fix docs

* fix tests

* change num_labels to num_targets

* Remove PatchTSTTranspose

* remove arguments in PatchTSTMeanScaler

* remove arguments in PatchTSTStdScaler

* add config as an argument to all the scaler classes

* reformat

* Add norm_eps for batchnorm and layernorm

* reformat.

* reformat

* edit docstring

* update docstring

* change variable name pooling to pooling_type

* fix output_hidden_states as tuple

* fix bug when calling PatchTSTBatchNorm

* change stride to patch_stride

* create PatchTSTPositionalEncoding class and restructure the PatchTSTEncoder

* formatting

* initialize scalers with configs

* edit output_hidden_states

* style

* fix forecast_mask_patches doc string

---------

Co-authored-by: Gift Sinthong <gift.sinthong@ibm.com>
Co-authored-by: Nam Nguyen <namctin@gmail.com>
Co-authored-by: Vijay Ekambaram <vijaykr.e@gmail.com>
Co-authored-by: Ngoc Diep Do <55230119+diepi@users.noreply.github.com>
Co-authored-by: Wesley Gifford <79663411+wgifford@users.noreply.github.com>
Co-authored-by: Wesley M. Gifford <wmgifford@us.ibm.com>
Co-authored-by: nnguyen <nnguyen@us.ibm.com>
Co-authored-by: Ngoc Diep Do <diiepy@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: NielsRogge <48327001+NielsRogge@users.noreply.github.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
This commit is contained in:
Gift Sinthong 2023-11-13 10:06:32 -08:00 committed by GitHub
parent 8017a59091
commit 2ac5b9325e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 2974 additions and 171 deletions

View File

@ -439,6 +439,7 @@ Current number of checkpoints: ![](https://img.shields.io/endpoint?url=https://h
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.

View File

@ -414,6 +414,7 @@ Número actual de puntos de control: ![](https://img.shields.io/endpoint?url=htt
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, and Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.

View File

@ -388,6 +388,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI से) साथ में कागज [विज़न ट्रांसफॉर्मर्स के साथ सिंपल ओपन-वोकैबुलरी ऑब्जेक्ट डिटेक्शन](https:/ /arxiv.org/abs/2205.06230) मैथियास मिंडरर, एलेक्सी ग्रिट्सेंको, ऑस्टिन स्टोन, मैक्सिम न्यूमैन, डिर्क वीसेनबोर्न, एलेक्सी डोसोवित्स्की, अरविंद महेंद्रन, अनुराग अर्नब, मुस्तफा देहघानी, ज़ुओरन शेन, जिओ वांग, ज़ियाओहुआ झाई, थॉमस किफ़, और नील हॉल्सबी द्वारा पोस्ट किया गया।
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI से) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. द्वाराअनुसंधान पत्र [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) के साथ जारी किया गया
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM से) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. द्वाराअनुसंधान पत्र [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) के साथ जारी किया गया
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google की ओर से) साथ में दिया गया पेपर [लंबे इनपुट सारांश के लिए ट्रांसफ़ॉर्मरों को बेहतर तरीके से एक्सटेंड करना](https://arxiv .org/abs/2208.04347) जेसन फांग, याओ झाओ, पीटर जे लियू द्वारा।
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (दीपमाइंड से) साथ में पेपर [पर्सीवर आईओ: संरचित इनपुट और आउटपुट के लिए एक सामान्य वास्तुकला] (https://arxiv.org/abs/2107.14795) एंड्रयू जेगल, सेबेस्टियन बोरग्यूड, जीन-बैप्टिस्ट अलायराक, कार्ल डोर्श, कैटलिन इओनेस्कु, डेविड द्वारा डिंग, स्कंद कोप्पुला, डैनियल ज़ोरान, एंड्रयू ब्रॉक, इवान शेलहैमर, ओलिवियर हेनाफ, मैथ्यू एम। बोट्विनिक, एंड्रयू ज़िसरमैन, ओरिओल विनियल्स, जोआओ कैरेरा द्वारा पोस्ट किया गया।

View File

@ -448,6 +448,7 @@ Flax、PyTorch、TensorFlowをcondaでインストールする方法は、それ
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI から) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al から公開された研究論文: [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068)
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby から公開された研究論文: [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230)
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI から) Matthias Minderer, Alexey Gritsenko, Neil Houlsby. から公開された研究論文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM から) Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam. から公開された研究論文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google から) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu から公開された研究論文: [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google から) Jason Phang, Yao Zhao, and Peter J. Liu から公開された研究論文: [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347)
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind から) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira から公開された研究論文: [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795)

View File

@ -363,6 +363,7 @@ Flax, PyTorch, TensorFlow 설치 페이지에서 이들을 conda로 설치하는
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (Meta AI 에서) Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 의 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 논문과 함께 발표했습니다.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (Google AI 에서) Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 의 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 논문과 함께 발표했습니다.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (Google AI 에서 제공)은 Matthias Minderer, Alexey Gritsenko, Neil Houlsby.의 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683)논문과 함께 발표했습니다.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (IBM 에서 제공)은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.의 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf)논문과 함께 발표했습니다.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (Google 에서) Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 의 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 논문과 함께 발표했습니다.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (Google 에서) Jason Phang, Yao Zhao, Peter J. Liu 의 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 논문과 함께 발표했습니다.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (Deepmind 에서) Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 의 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 논문과 함께 발표했습니다.

View File

@ -387,6 +387,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (来自 Meta AI) 伴随论文 [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) 由 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al 发布。
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (来自 Google AI) 伴随论文 [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) 由 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby 发布。
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (来自 Google AI) 伴随论文 [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) 由 Matthias Minderer, Alexey Gritsenko, Neil Houlsby 发布。
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (来自 IBM) 伴随论文 [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) 由 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam 发布。
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (来自 Google) 伴随论文 [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) 由 Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu 发布。
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (来自 Google) 伴随论文 [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) 由 Jason Phang, Yao Zhao, Peter J. Liu 发布。
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (来自 Deepmind) 伴随论文 [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) 由 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira 发布。

View File

@ -399,6 +399,7 @@ conda install -c huggingface transformers
1. **[OPT](https://huggingface.co/docs/transformers/master/model_doc/opt)** (from Meta AI) released with the paper [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2205.01068) by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
1. **[OWL-ViT](https://huggingface.co/docs/transformers/model_doc/owlvit)** (from Google AI) released with the paper [Simple Open-Vocabulary Object Detection with Vision Transformers](https://arxiv.org/abs/2205.06230) by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
1. **[OWLv2](https://huggingface.co/docs/transformers/model_doc/owlv2)** (from Google AI) released with the paper [Scaling Open-Vocabulary Object Detection](https://arxiv.org/abs/2306.09683) by Matthias Minderer, Alexey Gritsenko, Neil Houlsby.
1. **[PatchTST](https://huggingface.co/docs/transformers/main/model_doc/patchtst)** (from IBM) released with the paper [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/pdf/2211.14730.pdf) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
1. **[Pegasus](https://huggingface.co/docs/transformers/model_doc/pegasus)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777) by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
1. **[PEGASUS-X](https://huggingface.co/docs/transformers/model_doc/pegasus_x)** (from Google) released with the paper [Investigating Efficiently Extending Transformers for Long Input Summarization](https://arxiv.org/abs/2208.04347) by Jason Phang, Yao Zhao, Peter J. Liu.
1. **[Perceiver IO](https://huggingface.co/docs/transformers/model_doc/perceiver)** (from Deepmind) released with the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.

View File

@ -747,6 +747,8 @@
title: Autoformer
- local: model_doc/informer
title: Informer
- local: model_doc/patchtst
title: PatchTST
- local: model_doc/time_series_transformer
title: Time Series Transformer
title: Time series models

View File

@ -213,6 +213,7 @@ Flax), PyTorch, and/or TensorFlow.
| [OPT](model_doc/opt) | ✅ | ✅ | ✅ |
| [OWL-ViT](model_doc/owlvit) | ✅ | ❌ | ❌ |
| [OWLv2](model_doc/owlv2) | ✅ | ❌ | ❌ |
| [PatchTST](model_doc/patchtst) | ✅ | ❌ | ❌ |
| [Pegasus](model_doc/pegasus) | ✅ | ✅ | ✅ |
| [PEGASUS-X](model_doc/pegasus_x) | ✅ | ❌ | ❌ |
| [Perceiver](model_doc/perceiver) | ✅ | ❌ | ❌ |

View File

@ -0,0 +1,73 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PatchTST
## Overview
The PatchTST model was proposed in [A Time Series is Worth 64 Words: Long-term Forecasting with Transformers](https://arxiv.org/abs/2211.14730) by Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam.
The abstract from the paper is the following:
*We propose an efficient design of Transformer-based models for multivariate time series forecasting and self-supervised representation learning. It is based on two key components: (i) segmentation of time series into subseries-level patches which are served as input tokens to Transformer; (ii) channel-independence where each channel contains a single univariate time series that shares the same embedding and Transformer weights across all the series. Patching design naturally has three-fold benefit: local semantic information is retained in the embedding; computation and memory usage of the attention maps are quadratically reduced given the same look-back window; and the model can attend longer history. Our channel-independent patch time series Transformer (PatchTST) can improve the long-term forecasting accuracy significantly when compared with that of SOTA Transformer-based models. We also apply our model to self-supervised pre-training tasks and attain excellent fine-tuning performance, which outperforms supervised training on large datasets. Transferring of masked pre-trained representation on one dataset to others also produces SOTA forecasting accuracy.*
Tips:
The model can also be used for time series classification and time series regression. See the respective [`PatchTSTForClassification`] and [`PatchTSTForRegression`] classes.
At a high level the model vectorizes time series into patches of a given size and encodes them via a Transformer which then outputs the prediction length forecasts:
![model](https://github.com/namctin/transformers/assets/8100/150af169-29de-419a-8d98-eb78251c21fa)
This model was contributed by [namctin](https://huggingface.co/namctin), [gsinthong](https://huggingface.co/gsinthong), [diepi](https://huggingface.co/diepi), [vijaye12](https://huggingface.co/vijaye12), [wmgifford](https://huggingface.co/wmgifford), and [kashif](https://huggingface.co/kashif).
The original code can be found [here](https://github.com/yuqinie98/PatchTST).
## PatchTSTConfig
[[autodoc]] PatchTSTConfig
## PatchTSTModel
[[autodoc]] PatchTSTModel
- forward
## PatchTSTForPrediction
[[autodoc]] PatchTSTForPrediction
- forward
## PatchTSTForClassification
[[autodoc]] PatchTSTForClassification
- forward
## PatchTSTForPretraining
[[autodoc]] PatchTSTForPretraining
- forward
## PatchTSTForRegression
[[autodoc]] PatchTSTForRegression
- forward

View File

@ -493,6 +493,7 @@ _import_structure = {
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"models.patchtst": ["PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP", "PatchTSTConfig"],
"models.pegasus": ["PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusConfig", "PegasusTokenizer"],
"models.pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"],
"models.perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverTokenizer"],
@ -1167,6 +1168,8 @@ else:
"MODEL_FOR_TEXT_ENCODING_MAPPING",
"MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING",
"MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING",
"MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING",
"MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING",
"MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING",
"MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING",
"MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING",
@ -2485,6 +2488,17 @@ else:
"OwlViTVisionModel",
]
)
_import_structure["models.patchtst"].extend(
[
"PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST",
"PatchTSTForClassification",
"PatchTSTForPrediction",
"PatchTSTForPretraining",
"PatchTSTForRegression",
"PatchTSTModel",
"PatchTSTPreTrainedModel",
]
)
_import_structure["models.pegasus"].extend(
["PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel"]
)
@ -4697,6 +4711,7 @@ if TYPE_CHECKING:
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .models.patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig
from .models.pegasus import PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusConfig, PegasusTokenizer
from .models.pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
from .models.perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverTokenizer
@ -5303,6 +5318,8 @@ if TYPE_CHECKING:
MODEL_FOR_TEXT_ENCODING_MAPPING,
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING,
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
@ -6387,6 +6404,15 @@ if TYPE_CHECKING:
OwlViTTextModel,
OwlViTVisionModel,
)
from .models.patchtst import (
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST,
PatchTSTForClassification,
PatchTSTForPrediction,
PatchTSTForPretraining,
PatchTSTForRegression,
PatchTSTModel,
PatchTSTPreTrainedModel,
)
from .models.pegasus import (
PegasusForCausalLM,
PegasusForConditionalGeneration,

View File

@ -158,6 +158,7 @@ from . import (
opt,
owlv2,
owlvit,
patchtst,
pegasus,
pegasus_x,
perceiver,

View File

@ -77,6 +77,8 @@ else:
"MODEL_WITH_LM_HEAD_MAPPING",
"MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING",
"MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING",
"MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING",
"MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING",
"AutoModel",
"AutoBackbone",
"AutoModelForAudioClassification",
@ -250,6 +252,8 @@ if TYPE_CHECKING:
MODEL_FOR_TEXT_ENCODING_MAPPING,
MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING,
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING,
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,

View File

@ -164,6 +164,7 @@ CONFIG_MAPPING_NAMES = OrderedDict(
("opt", "OPTConfig"),
("owlv2", "Owlv2Config"),
("owlvit", "OwlViTConfig"),
("patchtst", "PatchTSTConfig"),
("pegasus", "PegasusConfig"),
("pegasus_x", "PegasusXConfig"),
("perceiver", "PerceiverConfig"),
@ -376,6 +377,7 @@ CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict(
("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"),
@ -607,6 +609,7 @@ MODEL_NAMES_MAPPING = OrderedDict(
("opt", "OPT"),
("owlv2", "OWLv2"),
("owlvit", "OWL-ViT"),
("patchtst", "PatchTST"),
("pegasus", "Pegasus"),
("pegasus_x", "PEGASUS-X"),
("perceiver", "Perceiver"),

View File

@ -157,6 +157,7 @@ MODEL_MAPPING_NAMES = OrderedDict(
("opt", "OPTModel"),
("owlv2", "Owlv2Model"),
("owlvit", "OwlViTModel"),
("patchtst", "PatchTSTModel"),
("pegasus", "PegasusModel"),
("pegasus_x", "PegasusXModel"),
("perceiver", "PerceiverModel"),
@ -1130,6 +1131,18 @@ MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES = OrderedDict(
]
)
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES = OrderedDict(
[
("patchtst", "PatchTSTForClassification"),
]
)
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES = OrderedDict(
[
("patchtst", "PatchTSTForRegression"),
]
)
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES = OrderedDict(
[
("swin2sr", "Swin2SRForImageSuperResolution"),
@ -1221,6 +1234,14 @@ MODEL_FOR_MASK_GENERATION_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL
MODEL_FOR_TEXT_ENCODING_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_TEXT_ENCODING_MAPPING_NAMES)
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING_NAMES
)
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING_NAMES
)
MODEL_FOR_IMAGE_TO_IMAGE_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, MODEL_FOR_IMAGE_TO_IMAGE_MAPPING_NAMES)

View File

@ -208,71 +208,70 @@ class AutoformerFeatureEmbedder(nn.Module):
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeries->Autoformer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along some given dimension `dim`, and then normalizes it
by subtracting from the mean and dividing by the standard deviation.
Args:
dim (`int`):
Dimension along which to calculate the mean and standard deviation.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
minimum_scale (`float`, *optional*, defaults to 1e-5):
Default scale that is used for elements that are constantly zero along dimension `dim`.
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, dim: int, keepdim: bool = False, minimum_scale: float = 1e-5):
def __init__(self, config: AutoformerConfig):
super().__init__()
if not dim > 0:
raise ValueError("Cannot compute scale along dim = 0 (batch dimension), please provide dim > 0")
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
@torch.no_grad()
def forward(self, data: torch.Tensor, weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
denominator = weights.sum(self.dim, keepdim=self.keepdim)
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * weights).sum(self.dim, keepdim=self.keepdim) / denominator
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * weights) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeries->Autoformer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along dimension `dim`, and scales the data
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
default_scale (`float`, *optional*, defaults to `None`):
Default scale that is used for elements that are constantly zero. If `None`, we use the scale of the batch.
minimum_scale (`float`, *optional*, defaults to 1e-10):
Default minimum possible scale that is used for any item.
"""
def __init__(
self, dim: int = -1, keepdim: bool = True, default_scale: Optional[float] = None, minimum_scale: float = 1e-10
):
def __init__(self, config: AutoformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.default_scale = default_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
@torch.no_grad()
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# shape: (N, [C], T=1)
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
@ -300,26 +299,29 @@ class AutoformerMeanScaler(nn.Module):
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeries->Autoformer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along dimension `dim`, and therefore applies no scaling to the input data.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, dim: int, keepdim: bool = False):
def __init__(self, config: AutoformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@ -1433,11 +1435,11 @@ class AutoformerModel(AutoformerPreTrainedModel):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = AutoformerMeanScaler(dim=1, keepdim=True)
self.scaler = AutoformerMeanScaler(config)
elif config.scaling == "std":
self.scaler = AutoformerStdScaler(dim=1, keepdim=True)
self.scaler = AutoformerStdScaler(config)
else:
self.scaler = AutoformerNOPScaler(dim=1, keepdim=True)
self.scaler = AutoformerNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = AutoformerFeatureEmbedder(

View File

@ -81,71 +81,70 @@ class InformerFeatureEmbedder(nn.Module):
)
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeries->Informer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesStdScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along some given dimension `dim`, and then normalizes it
by subtracting from the mean and dividing by the standard deviation.
Args:
dim (`int`):
Dimension along which to calculate the mean and standard deviation.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
minimum_scale (`float`, *optional*, defaults to 1e-5):
Default scale that is used for elements that are constantly zero along dimension `dim`.
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, dim: int, keepdim: bool = False, minimum_scale: float = 1e-5):
def __init__(self, config: InformerConfig):
super().__init__()
if not dim > 0:
raise ValueError("Cannot compute scale along dim = 0 (batch dimension), please provide dim > 0")
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
@torch.no_grad()
def forward(self, data: torch.Tensor, weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
denominator = weights.sum(self.dim, keepdim=self.keepdim)
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * weights).sum(self.dim, keepdim=self.keepdim) / denominator
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * weights) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeries->Informer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesMeanScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along dimension `dim`, and scales the data
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
default_scale (`float`, *optional*, defaults to `None`):
Default scale that is used for elements that are constantly zero. If `None`, we use the scale of the batch.
minimum_scale (`float`, *optional*, defaults to 1e-10):
Default minimum possible scale that is used for any item.
"""
def __init__(
self, dim: int = -1, keepdim: bool = True, default_scale: Optional[float] = None, minimum_scale: float = 1e-10
):
def __init__(self, config: InformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.default_scale = default_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
@torch.no_grad()
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# shape: (N, [C], T=1)
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
@ -173,26 +172,29 @@ class InformerMeanScaler(nn.Module):
return scaled_data, torch.zeros_like(scale), scale
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeries->Informer
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesNOPScaler with TimeSeriesTransformer->Informer,TimeSeries->Informer
class InformerNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along dimension `dim`, and therefore applies no scaling to the input data.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, dim: int, keepdim: bool = False):
def __init__(self, config: InformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@ -1446,11 +1448,11 @@ class InformerModel(InformerPreTrainedModel):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = InformerMeanScaler(dim=1, keepdim=True)
self.scaler = InformerMeanScaler(config)
elif config.scaling == "std":
self.scaler = InformerStdScaler(dim=1, keepdim=True)
self.scaler = InformerStdScaler(config)
else:
self.scaler = InformerNOPScaler(dim=1, keepdim=True)
self.scaler = InformerNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = InformerFeatureEmbedder(

View File

@ -0,0 +1,66 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_import_structure = {
"configuration_patchtst": [
"PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP",
"PatchTSTConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_patchtst"] = [
"PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST",
"PatchTSTModel",
"PatchTSTPreTrainedModel",
"PatchTSTForPrediction",
"PatchTSTForPretraining",
"PatchTSTForRegression",
"PatchTSTForClassification",
]
if TYPE_CHECKING:
from .configuration_patchtst import PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP, PatchTSTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_patchtst import (
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST,
PatchTSTForClassification,
PatchTSTForPrediction,
PatchTSTForPretraining,
PatchTSTForRegression,
PatchTSTModel,
PatchTSTPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)

View File

@ -0,0 +1,274 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PatchTST model configuration"""
from typing import List, Optional, Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ibm/patchtst-base": "https://huggingface.co/ibm/patchtst-base/resolve/main/config.json",
# See all PatchTST models at https://huggingface.co/ibm/models?filter=patchtst
}
class PatchTSTConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`PatchTSTModel`]. It is used to instantiate an
PatchTST model according to the specified arguments, defining the model architecture.
[ibm/patchtst](https://huggingface.co/ibm/patchtst) architecture.
Configuration objects inherit from [`PretrainedConfig`] can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_input_channels (`int`, *optional*, defaults to 1):
The size of the target variable which by default is 1 for univariate targets. Would be > 1 in case of
multivariate targets.
context_length (`int`, *optional*, defaults to 32):
The context length for the encoder.
distribution_output (`str`, *optional*, defaults to `"student_t"`):
The distribution emission head for the model when loss is "nll". Could be either "student_t", "normal" or
"negative_binomial".
loss (`str`, *optional*, defaults to `"mse"`):
The loss function for the model corresponding to the `distribution_output` head. For parametric
distributions it is the negative log likelihood ("nll") and for point estimates it is the mean squared
error "mse".
patch_length (`int`, *optional*, defaults to 1):
Define the patch length of the patchification process.
patch_stride (`int`, *optional*, defaults to 1):
define the stride of the patchification process.
encoder_layers (`int`, *optional*, defaults to 3):
Number of encoder layers.
d_model (`int`, *optional*, defaults to 64):
Dimensionality of the transformer layers.
encoder_attention_heads (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
shared_embedding (`bool`, *optional*, defaults to `True`):
Sharing the input embedding across all channels.
channel_attention (`bool`, *optional*, defaults to `False`):
Activate channel attention block in the Transformer to allow channels to attend each other.
encoder_ffn_dim (`int`, *optional*, defaults to 256):
Dimension of the "intermediate" (often named feed-forward) layer in encoder.
norm (`str` , *optional*, defaults to `"BatchNorm"`):
Normalization at each Transformer layer. Can be `"BatchNorm"` or `"LayerNorm"`.
norm_eps (`float`, *optional*, defaults to 1e-05):
A value added to the denominator for numerical stability of normalization.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the encoder, and decoder.
positional_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability in the positional embedding layer.
dropout_path (`float`, *optional*, defaults to 0.0):
The dropout path in the residual block.
ff_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability used between the two layers of the feed-forward networks.
bias (`bool`, *optional*, defaults to `True`):
Consider bias in the feed-forward networks.
activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (string) in the encoder.`"gelu"` and `"relu"` are supported.
pre_norm (`bool`, *optional*, defaults to `True`):
Normalization is applied before self-attention if pre_norm is set to `True`. Otherwise, normalization is
applied after residual block.
positional_encoding_type (`str`, *optional*, defaults to `"sincos"`):
Positional encodings. `"zeros"`, `"normal"`, `"uniform"' and `"sincos"` are supported.
learn_pe (`bool`, *optional*, defaults to `False`):
Whether the positional encoding is updated during training.
use_cls_token (`bool`, *optional*, defaults to `False`):
Whether cls token is used.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated normal weight initialization distribution.
shared_projection (`bool`, *optional*, defaults to `True`):
Sharing the projection layer across different channels in the forecast head.
seed_number (`Optional`, *optional*):
Seed number used for random masking. If unset, no seed is set.
scaling (`Union`, *optional*, defaults to `"mean"`):
Whether to scale the input targets via "mean" scaler, "std" scaler or no scaler if `None`. If `True`, the
scaler is set to "mean".
mask_input (`bool`, *optional*, defaults to `False`):
Apply masking during the pretraining.
mask_type (`str`, *optional*, defaults to `"random"`):
Masking type. Only `"random"` and `"forecast"` are currently supported.
random_mask_ratio (`float`, *optional*, defaults to 0.5):
Masking ratio is applied to mask the input data during random pretraining.
forecast_mask_patches (`List`, *optional*, defaults to `[2, 3]`):
List of patch lengths to mask in the end of the data.
forecast_mask_ratios (`List`, *optional*, defaults to `[1, 1]`):
List of weights to use for each patch length. For Ex. if patch_lengths is [5,4] and mix_ratio is [1,1],
then equal weights to both patch lengths. Defaults to None.
channel_consistent_masking (`bool`, *optional*, defaults to `False`):
If channel consistent masking is True, all the channels will have the same masking.
unmasked_channel_indices (`list`, *optional*):
Channels that are not masked during pretraining.
mask_value (`int`, *optional*, defaults to 0):
Define the value of entries to be masked when pretraining.
pooling_type (`str`, *optional*, defaults to `"mean"`):
Pooling of the embedding. `"mean"`, `"max"` and `None` are supported.
head_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for head.
prediction_length (`int`, *optional*, defaults to 24):
The prediction length for the encoder. In other words, the prediction horizon of the model.
num_targets (`int`, *optional*, defaults to 1):
Number of targets for regression and classificastion tasks. For classification, it is the number of
classes.
output_range (`list`, *optional*):
Output range for regression task. The range of output values can be set to enforce the model to produce
values within a range.
num_parallel_samples (`int`, *optional*, defaults to 100):
The number of samples is generated in parallel for probablistic prediction.
```python
>>> from transformers import PatchTSTConfig, PatchTSTModel
>>> # Initializing an PatchTST configuration with 12 time steps for prediction
>>> configuration = PatchTSTConfig(prediction_length=12)
>>> # Randomly initializing a model (with random weights) from the configuration
>>> model = PatchTSTModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "patchtst"
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
"num_hidden_layers": "encoder_layers",
}
def __init__(
self,
# time series specific configuration
num_input_channels: int = 1,
context_length: int = 32,
distribution_output: str = "student_t",
loss: str = "mse",
# PatchTST arguments
patch_length: int = 1,
patch_stride: int = 1,
# Transformer architecture configuration
encoder_layers: int = 3,
d_model: int = 64,
encoder_attention_heads: int = 4,
shared_embedding: bool = True,
channel_attention: bool = False,
encoder_ffn_dim: int = 256,
norm: str = "BatchNorm",
norm_eps: float = 1e-5,
attention_dropout: float = 0.0,
dropout: float = 0.0,
positional_dropout: float = 0.0,
dropout_path: float = 0.0,
ff_dropout: float = 0.0,
bias: bool = True,
activation_function: str = "gelu",
pre_norm: bool = True,
positional_encoding_type: str = "sincos",
learn_pe: bool = False,
use_cls_token: bool = False,
init_std: float = 0.02,
shared_projection: bool = True,
seed_number: Optional[int] = None,
scaling: Optional[Union[str, bool]] = "mean",
# mask pretraining
mask_input: Optional[bool] = None,
mask_type: str = "random",
random_mask_ratio: float = 0.5,
forecast_mask_patches: List[int] = [2, 3],
forecast_mask_ratios: List[int] = [1, 1],
channel_consistent_masking: bool = False,
unmasked_channel_indices: Optional[List[int]] = None,
mask_value=0,
# head
pooling_type: str = "mean",
head_dropout: float = 0.0,
prediction_length: int = 24,
num_targets: int = 1,
output_range: List = None,
# distribution head
num_parallel_samples: int = 100,
**kwargs,
):
# time series specific configuration
self.context_length = context_length
self.num_input_channels = num_input_channels # n_vars
self.loss = loss
self.distribution_output = distribution_output
self.num_parallel_samples = num_parallel_samples
# Transformer architecture configuration
self.d_model = d_model
self.encoder_attention_heads = encoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.dropout = dropout
self.attention_dropout = attention_dropout
self.shared_embedding = shared_embedding
self.channel_attention = channel_attention
self.norm = norm
self.norm_eps = norm_eps
self.positional_dropout = positional_dropout
self.dropout_path = dropout_path
self.ff_dropout = ff_dropout
self.bias = bias
self.activation_function = activation_function
self.pre_norm = pre_norm
self.positional_encoding_type = positional_encoding_type
self.learn_pe = learn_pe
self.use_cls_token = use_cls_token
self.init_std = init_std
self.scaling = scaling
# PatchTST parameters
self.patch_length = patch_length
self.patch_stride = patch_stride
self.num_patches = self._num_patches()
# Mask pretraining
self.seed_number = seed_number
self.mask_input = mask_input
self.mask_type = mask_type
self.random_mask_ratio = random_mask_ratio # for random masking
self.forecast_mask_patches = forecast_mask_patches # for forecast masking
self.forecast_mask_ratios = forecast_mask_ratios
self.channel_consistent_masking = channel_consistent_masking
self.unmasked_channel_indices = unmasked_channel_indices
self.mask_value = mask_value
# general head params
self.pooling_type = pooling_type
self.head_dropout = head_dropout
# For prediction head
self.shared_projection = shared_projection
self.prediction_length = prediction_length
# For prediction and regression head
self.num_parallel_samples = num_parallel_samples
# Regression
self.num_targets = num_targets
self.output_range = output_range
super().__init__(**kwargs)
def _num_patches(self):
return (max(self.context_length, self.patch_length) - self.patch_length) // self.patch_stride + 1

File diff suppressed because it is too large Load Diff

View File

@ -83,67 +83,66 @@ class TimeSeriesFeatureEmbedder(nn.Module):
class TimeSeriesStdScaler(nn.Module):
"""
Standardize features by calculating the mean and scaling along some given dimension `dim`, and then normalizes it
by subtracting from the mean and dividing by the standard deviation.
Args:
dim (`int`):
Dimension along which to calculate the mean and standard deviation.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
minimum_scale (`float`, *optional*, defaults to 1e-5):
Default scale that is used for elements that are constantly zero along dimension `dim`.
Standardize features by calculating the mean and scaling along the first dimension, and then normalizes it by
subtracting from the mean and dividing by the standard deviation.
"""
def __init__(self, dim: int, keepdim: bool = False, minimum_scale: float = 1e-5):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
if not dim > 0:
raise ValueError("Cannot compute scale along dim = 0 (batch dimension), please provide dim > 0")
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
@torch.no_grad()
def forward(self, data: torch.Tensor, weights: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
denominator = weights.sum(self.dim, keepdim=self.keepdim)
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
denominator = observed_indicator.sum(self.dim, keepdim=self.keepdim)
denominator = denominator.clamp_min(1.0)
loc = (data * weights).sum(self.dim, keepdim=self.keepdim) / denominator
loc = (data * observed_indicator).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * weights) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
variance = (((data - loc) * observed_indicator) ** 2).sum(self.dim, keepdim=self.keepdim) / denominator
scale = torch.sqrt(variance + self.minimum_scale)
return (data - loc) / scale, loc, scale
class TimeSeriesMeanScaler(nn.Module):
"""
Computes a scaling factor as the weighted average absolute value along dimension `dim`, and scales the data
Computes a scaling factor as the weighted average absolute value along the first dimension, and scales the data
accordingly.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
default_scale (`float`, *optional*, defaults to `None`):
Default scale that is used for elements that are constantly zero. If `None`, we use the scale of the batch.
minimum_scale (`float`, *optional*, defaults to 1e-10):
Default minimum possible scale that is used for any item.
"""
def __init__(
self, dim: int = -1, keepdim: bool = True, default_scale: Optional[float] = None, minimum_scale: float = 1e-10
):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.minimum_scale = minimum_scale
self.default_scale = default_scale
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
self.minimum_scale = config.minimum_scale if hasattr(config, "minimum_scale") else 1e-10
self.default_scale = config.default_scale if hasattr(config, "default_scale") else None
@torch.no_grad()
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# shape: (N, [C], T=1)
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
observed_indicator (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_input_channels)`):
Calculating the scale on the observed indicator.
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
ts_sum = (data * observed_indicator).abs().sum(self.dim, keepdim=True)
num_observed = observed_indicator.sum(self.dim, keepdim=True)
@ -173,23 +172,26 @@ class TimeSeriesMeanScaler(nn.Module):
class TimeSeriesNOPScaler(nn.Module):
"""
Assigns a scaling factor equal to 1 along dimension `dim`, and therefore applies no scaling to the input data.
Args:
dim (`int`):
Dimension along which to compute the scale.
keepdim (`bool`, *optional*, defaults to `False`):
Controls whether to retain dimension `dim` (of length 1) in the scale tensor, or suppress it.
Assigns a scaling factor equal to 1 along the first dimension, and therefore applies no scaling to the input data.
"""
def __init__(self, dim: int, keepdim: bool = False):
def __init__(self, config: TimeSeriesTransformerConfig):
super().__init__()
self.dim = dim
self.keepdim = keepdim
self.dim = config.scaling_dim if hasattr(config, "scaling_dim") else 1
self.keepdim = config.keepdim if hasattr(config, "keepdim") else True
def forward(
self, data: torch.Tensor, observed_indicator: torch.Tensor
self, data: torch.Tensor, observed_indicator: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Parameters:
data (`torch.Tensor` of shape `(batch_size, sequence_length, num_input_channels)`):
input for Batch norm calculation
Returns:
tuple of `torch.Tensor` of shapes
(`(batch_size, sequence_length, num_input_channels)`,`(batch_size, 1, num_input_channels)`,
`(batch_size, 1, num_input_channels)`)
"""
scale = torch.ones_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
loc = torch.zeros_like(data, requires_grad=False).mean(dim=self.dim, keepdim=self.keepdim)
return data, loc, scale
@ -1180,11 +1182,11 @@ class TimeSeriesTransformerModel(TimeSeriesTransformerPreTrainedModel):
super().__init__(config)
if config.scaling == "mean" or config.scaling is True:
self.scaler = TimeSeriesMeanScaler(dim=1, keepdim=True)
self.scaler = TimeSeriesMeanScaler(config)
elif config.scaling == "std":
self.scaler = TimeSeriesStdScaler(dim=1, keepdim=True)
self.scaler = TimeSeriesStdScaler(config)
else:
self.scaler = TimeSeriesNOPScaler(dim=1, keepdim=True)
self.scaler = TimeSeriesNOPScaler(config)
if config.num_static_categorical_features > 0:
self.embedder = TimeSeriesFeatureEmbedder(

View File

@ -627,6 +627,12 @@ MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING = None
MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING = None
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING = None
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING = None
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
@ -6019,6 +6025,51 @@ class OwlViTVisionModel(metaclass=DummyObject):
requires_backends(self, ["torch"])
PATCHTST_PRETRAINED_MODEL_ARCHIVE_LIST = None
class PatchTSTForClassification(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForPrediction(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForPretraining(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTForRegression(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PatchTSTPreTrainedModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
class PegasusForCausalLM(metaclass=DummyObject):
_backends = ["torch"]

View File

View File

@ -0,0 +1,353 @@
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch PatchTST model. """
import inspect
import random
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
TOLERANCE = 1e-4
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING,
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING,
PatchTSTConfig,
PatchTSTForClassification,
PatchTSTForPrediction,
PatchTSTForPretraining,
PatchTSTForRegression,
PatchTSTModel,
)
@require_torch
class PatchTSTModelTester:
def __init__(
self,
parent,
batch_size=13,
prediction_length=7,
context_length=14,
patch_length=5,
patch_stride=5,
num_input_channels=1,
num_time_features=1,
is_training=True,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
lags_sequence=[1, 2, 3, 4, 5],
distil=False,
seed_number=42,
num_targets=2,
num_output_channels=2,
):
self.parent = parent
self.batch_size = batch_size
self.prediction_length = prediction_length
self.context_length = context_length
self.patch_length = patch_length
self.patch_stride = patch_stride
self.num_input_channels = num_input_channels
self.num_time_features = num_time_features
self.lags_sequence = lags_sequence
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.seed_number = seed_number
self.num_targets = num_targets
self.num_output_channels = num_output_channels
self.distil = distil
self.num_patches = (max(self.context_length, self.patch_length) - self.patch_length) // self.patch_stride + 1
def get_config(self):
return PatchTSTConfig(
prediction_length=self.prediction_length,
patch_length=self.patch_length,
patch_stride=self.patch_stride,
num_input_channels=self.num_input_channels,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
context_length=self.context_length,
activation_function=self.hidden_act,
seed_number=self.seed_number,
num_targets=self.num_targets,
num_output_channels=self.num_output_channels,
)
def prepare_patchtst_inputs_dict(self, config):
_past_length = config.context_length
# bs, num_input_channels, num_patch, patch_len
# [bs x seq_len x num_input_channels]
past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels])
future_values = floats_tensor([self.batch_size, config.prediction_length, self.num_input_channels])
inputs_dict = {
"past_values": past_values,
"future_values": future_values,
}
return inputs_dict
def prepare_config_and_inputs(self):
config = self.get_config()
inputs_dict = self.prepare_patchtst_inputs_dict(config)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
@require_torch
class PatchTSTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
PatchTSTModel,
PatchTSTForPrediction,
PatchTSTForPretraining,
PatchTSTForClassification,
PatchTSTForRegression,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (
(PatchTSTForPrediction, PatchTSTForRegression, PatchTSTForPretraining) if is_torch_available() else ()
)
pipeline_model_mapping = {"feature-extraction": PatchTSTModel} if is_torch_available() else {}
test_pruning = False
test_head_masking = False
test_missing_keys = False
test_torchscript = False
test_inputs_embeds = False
test_model_common_attributes = False
test_resize_embeddings = True
test_resize_position_embeddings = False
test_mismatched_shapes = True
test_model_parallel = False
has_attentions = False
def setUp(self):
self.model_tester = PatchTSTModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=PatchTSTConfig,
has_text_modality=False,
prediction_length=self.model_tester.prediction_length,
)
def test_config(self):
self.config_tester.run_common_tests()
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
# if PatchTSTForPretraining
if model_class == PatchTSTForPretraining:
inputs_dict.pop("future_values")
# else if classification model:
elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING):
rng = random.Random(self.model_tester.seed_number)
labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng)
inputs_dict["target_values"] = labels
inputs_dict.pop("future_values")
elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING):
rng = random.Random(self.model_tester.seed_number)
target_values = floats_tensor(
[self.model_tester.batch_size, self.model_tester.num_output_channels], rng=rng
)
inputs_dict["target_values"] = target_values
inputs_dict.pop("future_values")
return inputs_dict
def test_save_load_strict(self):
config, _ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers
)
self.assertEqual(len(hidden_states), expected_num_layers)
num_patch = self.model_tester.num_patches
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patch, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
print("model_class: ", model_class)
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="we have no tokens embeddings")
def test_resize_tokens_embeddings(self):
pass
def test_model_main_input_name(self):
model_signature = inspect.signature(getattr(PatchTSTModel, "forward"))
# The main input is the name of the argument after `self`
observed_main_input_name = list(model_signature.parameters.keys())[1]
self.assertEqual(PatchTSTModel.main_input_name, observed_main_input_name)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"past_values",
"past_observed_mask",
"future_values",
]
if model_class == PatchTSTForPretraining:
expected_arg_names.remove("future_values")
elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values(
MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING
):
expected_arg_names.remove("future_values")
expected_arg_names.remove("past_observed_mask")
expected_arg_names.append("target_values") if model_class in get_values(
MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING
) else expected_arg_names.append("target_values")
expected_arg_names.append("past_observed_mask")
expected_arg_names.extend(
[
"output_hidden_states",
"output_attentions",
"return_dict",
]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@is_flaky()
def test_retain_grad_hidden_states_attentions(self):
super().test_retain_grad_hidden_states_attentions()
# Note: Publishing of this dataset is under internal review. The dataset is not yet downloadable.
def prepare_batch(repo_id="ibm/etth1-forecast-test", file="train-batch.pt"):
file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset")
batch = torch.load(file, map_location=torch_device)
return batch
# Note: Publishing of pretrained weights is under internal review. Pretrained model is not yet downloadable.
@require_torch
@slow
class PatchTSTModelIntegrationTests(unittest.TestCase):
# Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable.
def test_pretrain_head(self):
model = PatchTSTForPretraining.from_pretrained("ibm/patchtst-etth1-pretrain").to(torch_device)
batch = prepare_batch()
torch.manual_seed(0)
with torch.no_grad():
output = model(past_values=batch["past_values"].to(torch_device)).prediction_output
num_patch = (
max(model.config.context_length, model.config.patch_length) - model.config.patch_length
) // model.config.patch_stride + 1
expected_shape = torch.Size([64, model.config.num_input_channels, num_patch, model.config.patch_length])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.5409]], [[0.3093]], [[-0.3759]], [[0.5068]], [[-0.8387]], [[0.0937]], [[0.2809]]],
device=torch_device,
)
self.assertTrue(torch.allclose(output[0, :7, :1, :1], expected_slice, atol=TOLERANCE))
# Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable.
def test_prediction_head(self):
model = PatchTSTForPrediction.from_pretrained("ibm/patchtst-etth1-forecast").to(torch_device)
batch = prepare_batch(file="test-batch.pt")
torch.manual_seed(0)
with torch.no_grad():
output = model(
past_values=batch["past_values"].to(torch_device),
future_values=batch["future_values"].to(torch_device),
).prediction_outputs
expected_shape = torch.Size([64, model.config.prediction_length, model.config.num_input_channels])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[0.3228, 0.4320, 0.4591, 0.4066, -0.3461, 0.3094, -0.8426]],
device=torch_device,
)
self.assertTrue(torch.allclose(output[0, :1, :7], expected_slice, atol=TOLERANCE))

View File

@ -185,6 +185,8 @@ IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
"TimeSeriesTransformerForPrediction",
"InformerForPrediction",
"AutoformerForPrediction",
"PatchTSTForPretraining",
"PatchTSTForPrediction",
"JukeboxVQVAE",
"JukeboxPrior",
"SamModel",