transformers/tests/test_modeling_bigbird_pegas...

763 lines
107 KiB
Python
Raw Normal View History

Add BigBirdPegasus (#10991) * init bigbird pegasus * add debugging nb ; update config * init conversion * update conversion script * complete conversion script * init forward() * complete forward() * add tokenizer * add some slow tests * commit current * fix copies * add docs * add conversion script for bigbird-roberta-summarization * remove TODO * small fixups * correct tokenizer * add bigbird core for now * fix config * fix more * revert pegasus-tokenizer back * make style * everything working for pubmed; yayygit status * complete tests finally * remove bigbird pegasus tok * correct tokenizer * correct tests * add tokenizer files * finish make style * fix test * update * make style * fix tok utils base file * make fix-copies * clean a bit * small update * fix some suggestions * add to readme * fix a bit, clean tests * fix more tests * Update src/transformers/__init__.py * Update src/transformers/__init__.py * make fix-copies * complete attn switching, auto-padding left * make style * fix auto-padding test * make style * fix batched attention tests * put tolerance at 1e-1 for stand-alone decoder test * fix docs * fix tests * correct slow tokenizer conversion * Apply suggestions from code review Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com> * complete remaining suggestions * fix test Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Suraj Patil <surajp815@gmail.com> Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
2021-05-07 15:27:43 +08:00
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch BigBirdPegasus model. """
import copy
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
BigBirdPegasusConfig,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
PegasusTokenizer,
)
from transformers.models.bigbird_pegasus.modeling_bigbird_pegasus import (
BigBirdPegasusDecoder,
BigBirdPegasusEncoder,
)
MODEL_ID = "google/bigbird-pegasus-large-pubmed"
def prepare_bigbird_pegasus_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.ne(config.pad_token_id)
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
input_dict = {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
input_dict = {k: input_dict[k].to(torch_device) for k in input_dict}
return input_dict
@require_torch
class BigBirdPegasusModelTester:
def __init__(
self,
parent,
batch_size=7,
seq_length=256,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=31,
hidden_act="gelu_fast",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=260,
eos_token_id=1,
pad_token_id=0,
bos_token_id=2,
attention_type="block_sparse",
use_bias=False,
block_size=16,
num_random_blocks=3,
scale_embedding=True,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.attention_type = attention_type
self.use_bias = use_bias
self.block_size = block_size
self.num_random_blocks = num_random_blocks
self.scale_embedding = scale_embedding
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
3,
)
input_ids[:, -1] = self.eos_token_id # Eos Token
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = BigBirdPegasusConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
attention_type=self.attention_type,
use_bias=self.use_bias,
block_size=self.block_size,
num_random_blocks=self.num_random_blocks,
scale_embedding=self.scale_embedding,
)
inputs_dict = prepare_bigbird_pegasus_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
model = BigBirdPegasusModel(config=config).get_decoder().to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict["attention_mask"]
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_attn_mask = ids_tensor((self.batch_size, 3), 2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))
def check_encoder_decoder_model_standalone(self, config, inputs_dict):
model = BigBirdPegasusModel(config=config).to(torch_device).eval()
outputs = model(**inputs_dict)
encoder_last_hidden_state = outputs.encoder_last_hidden_state
last_hidden_state = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
encoder = model.get_encoder()
encoder.save_pretrained(tmpdirname)
encoder = BigBirdPegasusEncoder.from_pretrained(tmpdirname).to(torch_device)
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
0
]
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)
with tempfile.TemporaryDirectory() as tmpdirname:
decoder = model.get_decoder()
decoder.save_pretrained(tmpdirname)
decoder = BigBirdPegasusDecoder.from_pretrained(tmpdirname).to(torch_device)
last_hidden_state_2 = decoder(
input_ids=inputs_dict["decoder_input_ids"],
attention_mask=inputs_dict["decoder_attention_mask"],
encoder_hidden_states=encoder_last_hidden_state,
encoder_attention_mask=inputs_dict["attention_mask"],
)[0]
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
def create_and_check_model(self, config, inputs_dict):
model = BigBirdPegasusModel(config=config).to(torch_device).eval()
input_ids = inputs_dict["input_ids"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
result = model(input_ids, decoder_input_ids=decoder_input_ids, use_cache=True)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
@require_torch
class BigBirdPegasusModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (
(
BigBirdPegasusModel,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (BigBirdPegasusForConditionalGeneration,) if is_torch_available() else ()
is_encoder_decoder = True
test_missing_keys = False
test_pruning = False
test_head_masking = False
# torchscript tests are not passing for now.
# Also torchscript is not an important feature to have in the beginning.
test_torchscript = False
# overwrite from GenerationTesterMixin to solve problem
# with conflicting random seeds
def _get_input_ids_and_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.attention_type = "original_full"
input_ids = inputs_dict[self.input_name]
attention_mask = torch.ones_like(input_ids, dtype=torch.long)
# cut to half length & take max batch_size 3
max_batch_size = 2
sequence_length = input_ids.shape[-1] // 2
input_ids = input_ids[:max_batch_size, :sequence_length]
attention_mask = attention_mask[:max_batch_size, :sequence_length]
# generate max 3 tokens
max_length = input_ids.shape[-1] + 3
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
config.pad_token_id = config.eos_token_id
return config, input_ids, attention_mask, max_length
def setUp(self):
self.model_tester = BigBirdPegasusModelTester(self)
self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_save_load_strict(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
self.assertEqual(info["missing_keys"], [])
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_model_standalone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
def test_model_various_attn_type(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["original_full", "block_sparse"]:
config_and_inputs[0].attention_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_generate_without_input_ids(self):
if self.model_tester.attention_type == "block_sparse":
# this test can never pass for BigBird-block-sparse attention since input_ids must be multiple of block_size
return
super().test_generate_without_input_ids()
def test_retain_grad_hidden_states_attentions(self):
if self.model_tester.attention_type == "block_sparse":
# this test can't pass since attention matrix (which is getting returned) can't have gradients (& just 0 at many locations)
return
super().test_retain_grad_hidden_states_attentions()
# BigBirdPegasusForSequenceClassification does not support inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in (
BigBirdPegasusModel,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
):
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
if not self.is_encoder_decoder:
input_ids = inputs["input_ids"]
del inputs["input_ids"]
else:
encoder_input_ids = inputs["input_ids"]
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
del inputs["input_ids"]
inputs.pop("decoder_input_ids", None)
wte = model.get_input_embeddings()
if not self.is_encoder_decoder:
inputs["inputs_embeds"] = wte(input_ids)
else:
inputs["inputs_embeds"] = wte(encoder_input_ids)
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
input_dict.pop("decoder_attention_mask")
input_dict.pop("decoder_input_ids")
model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device)
if torch_device == "cuda":
model.half()
model.generate(**input_dict)
model.generate(**input_dict, do_sample=True, early_stopping=False, num_return_sequences=3)
def test_batched_forward_original_full(self):
self._check_batched_forward(attn_type="original_full")
def test_batched_forward_block_sparse(self):
self._check_batched_forward(attn_type="block_sparse", tolerance=1e-1)
def _check_batched_forward(self, attn_type, tolerance=1e-3):
config = BigBirdPegasusConfig(block_size=16, attention_type=attn_type)
model = BigBirdPegasusForConditionalGeneration(config).to(torch_device)
model.eval()
sample_with_padding = [3, 8, 11] * 128 + [0] * 128
sample_without_padding = [4, 7, 9, 13] * 128
target_ids_without_padding = [2, 3] * 8
target_ids_with_padding = [7, 8] * 6 + 4 * [-100]
attention_mask = torch.tensor(
[[1] * 3 * 128 + [0] * 128, [1] * 4 * 128], device=torch_device, dtype=torch.long
)
input_ids = torch.tensor([sample_with_padding, sample_without_padding], device=torch_device, dtype=torch.long)
labels = torch.tensor(
[target_ids_without_padding, target_ids_with_padding], device=torch_device, dtype=torch.long
)
with torch.no_grad():
logits_batched = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels).logits
with torch.no_grad():
logits_single_first = model(input_ids=input_ids[:1, :-128], labels=labels[:1]).logits
self.assertTrue(torch.allclose(logits_batched[0, -3:], logits_single_first[0, -3:], atol=tolerance))
with torch.no_grad():
logits_single_second = model(input_ids=input_ids[1:], labels=labels[1:, :-4]).logits
self.assertTrue(torch.allclose(logits_batched[1, :3], logits_single_second[0, :3], atol=tolerance))
def test_auto_padding(self):
ids = [[7, 6, 9] * 65]
config, _ = self.model_tester.prepare_config_and_inputs()
input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long)
attention_mask = input_ids.new_ones(input_ids.shape)
decoder_input_ids = torch.tensor([[33, 5, 8] * 3], device=torch_device, dtype=torch.long)
config.block_size = 8
model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device)
output1 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[
"logits"
]
ids = [[7, 6, 9] * 65 + [0] * 5]
input_ids = torch.tensor(ids, device=torch_device, dtype=torch.long)
attention_mask = torch.tensor([[1] * 3 * 65 + [0] * 5], device=torch_device, dtype=torch.long)
output2 = model(input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids)[
"logits"
]
self.assertTrue(torch.allclose(output1, output2, atol=1e-5))
def test_for_change_to_full_attn(self):
self.model_tester.seq_length = 9
config, input_dict = self.model_tester.prepare_config_and_inputs()
# automatic switch will happen
config.attention_type = "block_sparse"
model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device)
state_dict = model.state_dict()
outputs1 = model(**input_dict)["logits"]
config.attention_type = "original_full"
model = BigBirdPegasusForConditionalGeneration(config).eval().to(torch_device)
model.load_state_dict(state_dict)
outputs2 = model(**input_dict)["logits"]
self.assertTrue(torch.allclose(outputs1, outputs2, atol=1e-5))
@require_torch
@require_sentencepiece
@require_tokenizers
@slow
class BigBirdPegasusModelIntegrationTests(unittest.TestCase):
def _get_dummy_input_ids(self):
# fmt: off
ids = torch.tensor(
[[685, 560, 630, 193, 836, 764, 708, 360, 10, 724, 278, 755, 805, 600, 71, 473, 601, 397, 315, 706, 487, 552, 88, 175, 601, 850, 678, 538, 846, 73, 778, 917, 116, 977, 756, 710, 1023, 848, 432, 449, 851, 100, 985, 178, 756, 798, 660, 148, 911, 424, 289, 962, 266, 698, 640, 545, 544, 715, 245, 152, 676, 511, 460, 883, 184, 29, 803, 129, 129, 933, 54, 902, 551, 489, 757, 274, 336, 389, 618, 43, 443, 544, 889, 258, 322, 1000, 938, 58, 292, 871, 120, 780, 431, 83, 92, 897, 399, 612, 566, 909, 634, 939, 85, 204, 325, 775, 965, 48, 640, 1013, 132, 973, 869, 181, 1001, 847, 144, 661, 228, 955, 792, 720, 910, 374, 854, 561, 306, 582, 170, 676, 449, 96, 198, 607, 257, 882, 691, 293, 931, 817, 862, 388, 611, 555, 974, 369, 1000, 918, 202, 384, 513, 907, 371, 556, 955, 384, 24, 700, 131, 378, 99, 575, 932, 735, 124, 964, 595, 943, 740, 149, 210, 563, 412, 783, 42, 59, 706, 37, 779, 87, 44, 873, 12, 771, 308, 81, 33, 183, 129, 807, 276, 175, 555, 372, 185, 445, 489, 590, 287, 281, 638, 771, 516, 95, 227, 876, 270, 881, 297, 329, 20, 608, 841, 411, 451, 249, 181, 324, 1005, 830, 783, 865, 261, 964, 750, 140, 1021, 599, 462, 890, 622, 844, 697, 529, 153, 926, 150, 111, 26, 465, 957, 890, 887, 118, 446, 596, 674, 873, 929, 229, 508, 764, 122, 327, 470, 288, 526, 840, 697, 153, 592, 42, 275, 553, 439, 208, 780, 167, 112, 350, 1018, 130, 736, 887, 813, 217, 382, 25, 68, 979, 1008, 772, 235, 717, 999, 292, 727, 1023, 702, 710, 728, 556, 33, 12, 617, 213, 139, 695, 1004, 422, 638, 669, 624, 489, 771, 540, 980, 218, 664, 822, 308, 175, 149, 950, 542, 580, 548, 808, 394, 74, 298, 920, 900, 815, 731, 947, 877, 772, 800, 778, 395, 540, 430, 200, 424, 62, 342, 866, 45, 803, 931, 89, 34, 646, 233, 768, 37, 769, 460, 291, 198, 895, 950, 255, 81, 447, 137, 190, 130, 210, 369, 292, 377, 348, 169, 885, 805, 177, 538, 324, 872, 509, 804, 115, 799, 30, 754, 290, 147, 274, 222, 341, 510, 515, 70, 358, 909, 557, 886, 766, 323, 624, 92, 342, 424, 552, 972, 663, 415, 658, 711, 968, 275, 861, 44, 84, 434, 810, 94, 175, 406, 202, 858, 499, 481, 988, 330, 541, 1004, 210, 618, 955, 897, 983, 576, 17, 107, 165, 607, 537, 629, 192, 196, 308, 137, 953, 860, 94, 892, 751, 88, 161, 148, 585, 456, 88, 14, 315, 594, 121, 885, 952, 833, 716, 733, 933, 282, 801, 427, 783, 471, 285, 277, 979, 325, 535, 228, 891, 596, 648, 969, 574, 654, 518, 257, 137, 208, 464, 950, 140, 5, 424, 349, 942, 283, 587, 821, 1007, 434, 220, 820, 740, 874, 787, 374, 291, 564, 671, 438, 827, 940, 824, 509, 1021, 787, 942, 856, 450, 327, 491, 54, 817, 95, 60, 337, 667, 637, 164, 571, 946, 107, 202, 301, 782, 890, 839, 551, 680, 649, 14, 1017, 904, 721, 1017, 535, 505, 848, 986, 777, 740, 775, 210, 456, 469, 474, 963, 573, 401, 57, 883, 750, 664, 281, 5, 613, 1005, 306, 344, 543, 567, 154, 789, 354, 358, 698, 408, 412, 30, 930, 372, 822, 632, 948, 855, 503, 8, 618, 1010, 138, 695, 897, 852, 377, 933, 722, 149, 886, 1009, 260, 127, 811, 578, 533, 805, 325, 977, 113, 944, 651, 238, 361, 991, 860, 556, 64, 928, 917, 455, 266, 445, 604, 624, 420, 340, 845, 275, 370, 843, 227, 226, 940, 644, 909, 229, 827, 898, 370, 129, 808, 25, 699, 293, 356, 838, 135, 4, 227, 890, 681, 445, 418, 285, 837, 27, 737, 249, 366, 948, 202, 438, 198, 930, 648, 638, 607, 73, 247, 853, 136, 708, 214, 476, 621, 324, 103, 853, 328, 596, 224, 257, 646, 348, 108, 927, 970, 980, 520, 150, 998, 477, 393, 684, 559, 1, 361, 692, 551, 90, 75, 500, 739, 636, 344, 97, 852, 283, 719, 33, 116, 455, 866, 429, 828, 826, 691, 174, 746, 133, 442, 94, 348, 402, 420, 707, 405, 942, 186, 976, 376, 677, 874, 703, 517, 498, 499, 206, 415, 366, 856, 739, 420, 586, 219, 952, 539, 375, 23, 461, 720, 355, 603, 52, 999, 815, 721, 574, 445, 816, 1019, 105, 641, 395, 972, 910, 328, 607, 519, 686, 246, 415, 528, 170, 167, 310, 940, 595, 392, 221, 834, 682, 835, 115, 861, 335, 742, 220, 247, 101, 416, 222, 179, 509, 175, 606, 627, 674, 781, 737, 746, 849, 67, 457, 1012, 126, 139, 625, 731, 156, 697, 121, 322, 449, 710, 857, 291, 976, 4, 701, 239, 678, 172, 724, 857, 583, 661, 903, 797, 628, 903, 835, 605, 989, 615, 870, 380, 710, 110, 330,
dtype=torch.long,
device=torch_device,
)
# fmt: on
return ids
def _get_dummy_target_ids(self):
# fmt: off
ids = torch.tensor(
[[13, 6, 1, 4, 12, 4, 8, 10, 4, 6, 3, 5, 8, 7, 9, 9]], # noqa: E231
dtype=torch.long,
device=torch_device,
)
# fmt: on
return ids
def test_inference_block_sparse(self):
model = BigBirdPegasusForConditionalGeneration.from_pretrained(
MODEL_ID, attention_type="block_sparse", block_size=16, num_random_blocks=3
)
model.to(torch_device)
input_ids = self._get_dummy_input_ids()
target_ids = self._get_dummy_target_ids()
outputs = model(input_ids, labels=target_ids)
prediction_logits = outputs.logits
self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103)))
# fmt: off
expected_prediction_logits_slice = torch.tensor(
[[1.7769, 5.8479, 6.2375, 2.2745, 8.6157, 4.7483, 5.0647, 6.5358, 2.3393, 7.8333, 3.8403, 0.0255, 7.219, 5.2759, 3.097, 6.387, 4.9341, 7.1409, 5.1179, 0.1144, 6.8268, 0.7598, 0.6258, 2.373, 0.4627, -1.9919, 1.8422, 3.4578], [1.8026, 5.9604, 5.954, 2.8642, 9.0608, 4.394, 5.3779, 7.0216, 1.543, 7.8744, 4.4231, -0.0398, 7.6091, 5.6611, 3.3536, 6.8624, 4.7699, 6.5241, 4.8893, 0.5791, 6.8368, 0.1034, 0.0338, 2.9393, 0.5034, -2.5509, 2.0172, 3.2858], [1.8426, 5.9151, 5.5374, 3.0426, 9.1762, 3.6287, 5.3916, 7.4621, 1.2582, 7.9244, 4.694, -0.1308, 7.4725, 5.5385, 3.4598, 7.0422, 4.2455, 5.797, 4.5927, 0.7478, 6.7467, -0.2695, -0.3207, 3.0269, 0.4714, -2.8134, 2.0406, 3.1089], [1.6527, 5.8416, 5.4558, 3.0044, 9.3478, 3.2607, 5.3887, 7.52, 0.9362, 7.8877, 4.8465, -0.1705, 7.3932, 5.6352, 3.5744, 7.2623, 4.0485, 5.2788, 4.5859, 0.8325, 6.6088, -0.3676, -0.6287, 3.1731, 0.4483, -3.1573, 2.0522, 2.8868]], # noqa: E231
device=torch_device,
)
# fmt: on
self.assertTrue(
torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4)
)
def test_inference_full_attn(self):
model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID, attention_type="original_full")
model.to(torch_device)
input_ids = self._get_dummy_input_ids()
target_ids = self._get_dummy_target_ids()
outputs = model(input_ids, labels=target_ids)
prediction_logits = outputs.logits
self.assertEqual(prediction_logits.shape, torch.Size((1, 16, 96103)))
# fmt: off
expected_prediction_logits_slice = torch.tensor(
[[1.3418, 5.8304, 6.5662, 2.0448, 8.7702, 4.6579, 4.9947, 6.429, 2.4296, 7.9431, 4.217, 0.0672, 7.334, 5.1966, 2.9603, 6.0814, 4.6756, 7.5522, 5.076, 0.213, 6.6638, 0.6577, 0.244, 2.1221, 0.7531, -2.4076, 1.8731, 3.5594], [1.5525, 6.0524, 6.309, 2.6245, 9.229, 4.5213, 5.0913, 7.0622, 1.7992, 8.0962, 4.7994, -0.0248, 7.7168, 5.5878, 3.0883, 6.5248, 4.7895, 6.9974, 4.8787, 0.5445, 6.6686, 0.0102, -0.1659, 2.6195, 0.7389, -2.8956, 1.9928, 3.3777], [1.6407, 6.2104, 6.0331, 2.8076, 9.4074, 3.9772, 5.0574, 7.5316, 1.4201, 8.3035, 5.0212, -0.1031, 7.553, 5.5023, 3.1427, 6.7674, 4.4409, 6.457, 4.525, 0.728, 6.5422, -0.6234, -0.4726, 2.7486, 0.6985, -3.0804, 1.9669, 3.2365], [1.5065, 6.1271, 5.8296, 2.8405, 9.5649, 3.6834, 5.1214, 7.546, 0.9758, 8.3335, 5.1952, -0.1395, 7.4348, 5.6893, 3.2942, 7.0356, 4.1665, 5.9695, 4.3898, 0.8931, 6.3988, -0.8957, -0.7522, 2.8924, 0.6498, -3.4358, 1.8654, 2.9735]], # noqa: E231
device=torch_device,
)
# fmt: on
self.assertTrue(
torch.allclose(prediction_logits[0, 4:8, 128:156], expected_prediction_logits_slice, atol=1e-4)
)
def test_seq_to_seq_generation(self):
MODEL_ID = "google/bigbird-pegasus-large-arxiv"
model = BigBirdPegasusForConditionalGeneration.from_pretrained(MODEL_ID).to(torch_device)
tokenizer = PegasusTokenizer.from_pretrained(MODEL_ID)
ARTICLE_LEP = r"""the lep experiments at the resonance of @xmath1-boson have tested the standard model ( sm ) at quantum level , measuring the @xmath1-decay into fermion pairs with an accuracy of one part in ten thousands . the good agreement of the lep data with the sm predictions have severely constrained the behavior of new physics at the @xmath1-pole . taking these achievements into account one can imagine that the physics of @xmath1-boson will again play the central role in the frontier of particle physics if the next generation @xmath1 factory comes true with the generated @xmath1 events several orders of magnitude higher than that of the lep . this factory can be realized in the gigaz option of the international linear collider ( ilc)@xcite . the ilc is a proposed electron - positron collider with tunable energy ranging from @xmath12 to @xmath13 and polarized beams in its first phase , and the gigaz option corresponds to its operation on top of the resonance of @xmath1 boson by adding a bypass to its main beam line . given the high luminosity , @xmath14 , and the cross section at the resonance of @xmath1 boson , @xmath15 , about @xmath16 @xmath1 events can be generated in an operational year of @xmath17 of gigaz , which implies that the expected sensitivity to the branching ratio of @xmath1-decay can be improved from @xmath18 at the lep to @xmath19 at the gigaz@xcite . in light of this , the @xmath1-boson properties , especially its exotic or rare decays which are widely believed to be sensitive to new physics , should be investigated comprehensively to evaluate their potential in probing new physics . among the rare @xmath1-decays , the flavor changing ( fc ) processes were most extensively studied to explore the flavor texture in new physics @xcite , and it was found that , although these processes are severely suppressed in the sm , their branching ratios in new physics models can be greatly enhanced to @xmath19 for lepton flavor violation decays @xcite and @xmath20 for quark flavor violation decays @xcite . besides the fc processes , the @xmath1-decay into light higgs boson(s ) is another type of rare process that was widely studied , e.g. the decay @xmath21 ( @xmath22 ) with the particle @xmath0 denoting a light higgs boson was studied in @xcite , the decay @xmath23 was studied in the two higgs doublet model ( 2hdm)@xcite and the minimal supersymmetric standard model ( mssm)@xcite , and the decay @xmath4 was studied in a model independent way @xcite , in 2hdm@xcite and also in mssm@xcite . these studies indicate that , in contrast with the kinematic forbidden of these decays in the sm , the rates of these decays can be as large as @xmath18 in new physics models , which lie within the expected sensitivity of the gigaz . in this work , we extend the previous studies of these decays to some new models and investigate these decays altogether . we are motivated by some recent studies on the singlet extension of the mssm , such as the next - to - minimal supersymmetric standard model ( nmssm ) @xcite and the nearly minimal supersymmetric standard model ( nmssm ) @xcite , where a light cp - odd higgs boson @xmath0 with singlet - dominant component may naturally arise from the spontaneous breaking of some approximate global symmetry like @xmath24 or peccei - quuin symmetry @xcite . these non - minimal supersymmetric models can not only avoid the @xmath25-problem , but also alleviate the little hierarchy by having such a light higgs boson @xmath0 @xcite . we are also motivated by that , with the latest experiments , the properties of the light higgs boson are more stringently constrained than before . so it is worth updating the previous studies . so far there is no model - independent lower bound on the lightest higgs boson mass . in the sm , it must be heavier than @xmath26 gev , obtained from the null observation of the higgs boson at lep experiments . however , due to the more complex structure of the higgs sector in the extensions of the sm , this lower bound can be significantly relaxed according to
ARTICLE_MAGNET = r"""it is well known that the classical magnetoresistance ( mr ) in metals or semiconductors with a closed free electron fermi surface increases quadratically with increasing magnetic field @xmath2 for @xmath3 and saturates when @xmath4 . here @xmath5 is the zero - magnetic - field mobility . hence , the extraordinarily high and linear mr ( lmr ) , which breaks this familiar rule , has been gaining much attention as soon as its discovery . in the past decade , this unexpected lmr has been reported in silver chalcogenide,@xcite indium antimonide,@xcite silicon,@xcite mnas - gaas composite material,@xcite and graphene.@xcite kapitza s linear law@xcite indicates that the metal shows a magnetoresistance linear in perpendicular magnetic field when it has an open fermi surface and a mean free path longer than the electronic larmor radius . recently , another two models , irrespective of the open fermi surface , have been constructed to provide possible mechanisms for the lmr phenomenon . abrikosov suggested a quantum - limit origin of lmr for the homogenous system with a gapless linear energy spectrum.@xcite his model requires that landau levels are well formed and the carrier concentration is small that all electrons occupy only the lowest landau band . alternatively , parish and littlewood developed a classical model without involving linear spectrum.@xcite ignoring the concrete microscopic mechanism , they attributed this unusual mr to the mobility fluctuations in a strongly inhomogenous system . topological insulators@xcite ( tis ) are novel materials with a full energy gap in bulk , while there are gapless surface states . due to its unique band structure with only one helical dirac cone and linear energy dispersion,@xcite the surface states of the ti bi@xmath0se@xmath1 become an excellent platform for the study of quantum - limit lmr . the recent experiment in this flat surface system , however , reported that a large positive mr , which becomes very linear above a characteristic field of @xmath6@xmath7@xmath8 t , was observed even in an opposite situation where the carrier sheet density is high that electrons occupy more than one landau levels.@xcite moreover , they found that raising temperature to room temperature almost has no influence on the observed lmr . it is striking that this observation is in conflict with abrikosov s model and also with the classical parish - littlewood model . so far a reliable theoretical scheme capable of explaining this novel experiment has still been lacking . in this paper , we generalize the balance - equation approach@xcite to a system modeling the surface states of a three - dimensional ti to investigate the two - dimensional magnetotransport in it . we find that a positive , nonsaturating and dominantly linear magnetoresistance can appear within quite wide magnetic - field range in the ti surface state having a positive and finite effective g - factor . this linear magnetoresistance shows up in the system of high carrier concentration and low mobility when electrons are in extended states and spread over many smeared landau levels , and persists up to room temperature , providing a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons.@xcite we consider the surface state of a bi@xmath0se@xmath1-type large bulk gap ti in the @xmath9-@xmath10 plane under the influence of a uniform magnetic field @xmath11 applied along the @xmath12 direction.@xcite following the experimental observation,@xcite we assume that the fermi energy locates in the gap of the bulk band and above the dirac point , i.e. the surface carriers are electrons . further , the separations of the fermi energy from the bottom of bulk band and dirac point are much larger than the highest temperature ( @xmath13 ) considered in this work . hence , the contribution from the bulk band to the magnetotransport is negligible . these electrons , scattered by randomly distributed impurities and by phonons , are driven by a unifo
inputs = tokenizer(
[ARTICLE_LEP, ARTICLE_MAGNET],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="pt",
)
inputs = {k: inputs[k].to(torch_device) for k in inputs}
hypotheses_batch = model.generate(**inputs)
EXPECTED_LEP = "motivated by some recent studies on the light cp - odd higgs boson @xmath0 in non - minimal supersymmetric models, we investigate the rare @xmath1-decays @xmath2 ( @xmath3 ) in the two higgs doublet model ( 2hdm ), the nearly minimal supersymmetric standard model ( nmssm ), the next - to - minimal supersymmetric standard model ( nmssm ) and the minimal supersymmetric standard model ( mssm ).<n> we find that the branching ratios of @xmath4 can reach @xmath5 in 2hdm, @xmath6 in nmssm and @xmath7 in mssm, which are at the level of @xmath8 in 2hdm, @xmath9 in nmssm and @xmath10 in mssm, respectively.<n> these rates can be significantly enhanced in new physics models which lie within the expected sensitivity of the gigaz option of the international linear collider ( ilc ). <n> = # 1,nucl. <n> phys. <n> b * # 1"
EXPECTED_MAGNET = "a positive, nonsaturating and dominantly linear magnetoresistance can appear within quite wide magnetic - field range in the surface state of a topological insulator having a positive and finite effective g - factor. this linear magnetoresistance shows up in the system of high carrier concentration and low mobility when electrons are in extended states and spread over many smeared landau levels, and persists up to room temperature, providing a possible mechanism for the recently observed linear magnetoresistance in topological insulator bi@xmath0se@xmath1 nanoribbons."
generated = tokenizer.batch_decode(
hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True
)
self.assertTrue(generated == [EXPECTED_LEP, EXPECTED_MAGNET])
class BigBirdPegasusStandaloneDecoderModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=7,
d_model=32,
decoder_seq_length=7,
is_training=True,
is_decoder=True,
use_attention_mask=True,
use_cache=False,
use_labels=True,
decoder_start_token_id=2,
decoder_ffn_dim=32,
decoder_layers=4,
encoder_attention_heads=4,
decoder_attention_heads=4,
max_position_embeddings=30,
is_encoder_decoder=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
scope=None,
attention_type="original_full",
use_bias=True,
block_size=16,
num_random_blocks=3,
):
self.parent = parent
self.batch_size = batch_size
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = decoder_layers
self.decoder_layers = decoder_layers
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.num_attention_heads = decoder_attention_heads
self.eos_token_id = eos_token_id
self.bos_token_id = bos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.use_cache = use_cache
self.max_position_embeddings = max_position_embeddings
self.is_encoder_decoder = is_encoder_decoder
self.scope = None
self.decoder_key_length = decoder_seq_length
self.base_model_out_len = 2
self.decoder_attention_idx = 1
self.attention_type = attention_type
self.use_bias = use_bias
self.block_size = block_size
self.num_random_blocks = num_random_blocks
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = BigBirdPegasusConfig(
vocab_size=self.vocab_size,
d_model=self.d_model,
decoder_layers=self.decoder_layers,
decoder_ffn_dim=self.decoder_ffn_dim,
encoder_attention_heads=self.encoder_attention_heads,
decoder_attention_heads=self.decoder_attention_heads,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
use_cache=self.use_cache,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
max_position_embeddings=self.max_position_embeddings,
is_encoder_decoder=self.is_encoder_decoder,
attention_type=self.attention_type,
use_bias=self.use_bias,
block_size=self.block_size,
num_random_blocks=self.num_random_blocks,
)
return (
config,
input_ids,
attention_mask,
lm_labels,
)
def create_and_check_decoder_model_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
config.use_cache = True
model = BigBirdPegasusDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
past_key_values = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
attention_mask,
lm_labels,
):
model = BigBirdPegasusDecoder(config=config).to(torch_device).eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"]
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
# big bird has extremely high logits which requires
# such a high error tolerance here
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=5e-1)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, lm_labels = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class BigBirdPegasusStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (BigBirdPegasusDecoder, BigBirdPegasusForCausalLM) if is_torch_available() else ()
all_generative_model_classes = (BigBirdPegasusForCausalLM,) if is_torch_available() else ()
test_pruning = False
is_encoder_decoder = False
def setUp(
self,
):
self.model_tester = BigBirdPegasusStandaloneDecoderModelTester(self, is_training=False)
self.config_tester = ConfigTester(self, config_class=BigBirdPegasusConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_attn_mask_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_retain_grad_hidden_states_attentions(self):
# decoder cannot keep gradients
return