transformers/pytorch_pretrained_bert/modeling_openai.py

809 lines
36 KiB
Python
Raw Normal View History

2019-01-15 19:59:38 +08:00
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""
import collections
2019-01-07 19:55:36 +08:00
import copy
import json
2019-01-08 19:26:58 +08:00
import logging
import math
import os
import shutil
2019-01-08 19:26:58 +08:00
import tarfile
import tempfile
2019-01-07 19:55:36 +08:00
import torch
import torch.nn as nn
2019-01-08 19:26:58 +08:00
from torch.nn import CrossEntropyLoss
2019-01-07 19:55:36 +08:00
from torch.nn.parameter import Parameter
2019-01-08 19:26:58 +08:00
from .file_utils import cached_path
from .modeling import BertLayerNorm as LayerNorm
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt.tar.gz"}
CONFIG_NAME = "openai_gpt_config.json"
WEIGHTS_NAME = "pytorch_model.bin"
def load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path):
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
"""
import re
import numpy as np
print("Loading weights...")
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
offsets = np.cumsum([np.prod(shape) for shape in shapes])
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]
# Thsi as used when we had a single embedding matrix for positions and tokens
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
# del init_params[1]
init_params = [arr.squeeze() for arr in init_params]
try:
assert model.tokens_embed.weight.shape == init_params[1].shape
assert model.positions_embed.weight.shape == init_params[0].shape
except AssertionError as e:
e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
e.args += (model.positions_embed.weight.shape, init_params[0].shape)
raise
model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
model.positions_embed.weight.data = torch.from_numpy(init_params[0])
names.pop(0)
# Pop position and token embedding arrays
init_params.pop(0)
init_params.pop(0)
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
name = name[6:] # skip "model/"
assert name[-2:] == ":0"
name = name[:-2]
name = name.split('/')
pointer = model
for m_name in name:
if re.fullmatch(r'[A-Za-z]+\d+', m_name):
l = re.split(r'(\d+)', m_name)
else:
l = [m_name]
if l[0] == 'g':
pointer = getattr(pointer, 'weight')
elif l[0] == 'b':
pointer = getattr(pointer, 'bias')
elif l[0] == 'w':
pointer = getattr(pointer, 'weight')
else:
pointer = getattr(pointer, l[0])
if len(l) >= 2:
num = int(l[1])
pointer = pointer[num]
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
print("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
2019-01-07 19:55:36 +08:00
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
class OpenAIGPTConfig(object):
"""Configuration class to store the configuration of a `OpenAIGPTModel`.
"""
def __init__(
self,
vocab_size_or_config_json_file=40478,
n_special=0,
2019-01-29 16:54:18 +08:00
n_positions=512,
n_ctx=512,
n_embd=768,
n_layer=12,
n_head=12,
afn="gelu",
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
initializer_range=0.02,
):
2019-01-08 19:26:58 +08:00
"""Constructs OpenAIGPTConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
2019-01-29 16:54:18 +08:00
n_positions: Number of positional embeddings.
n_ctx: Size of the causal mask (usually same as n_positions).
2019-01-08 19:26:58 +08:00
n_embd: Dimensionality of the embeddings and hidden states.
n_layer: Number of hidden layers in the Transformer encoder.
n_head: Number of attention heads for each attention layer in
the Transformer encoder.
afn: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
resid_pdrop: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attn_pdrop: The dropout ratio for the attention
probabilities.
embd_pdrop: The dropout ratio for the embeddings.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
2019-01-08 19:26:58 +08:00
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.n_special = n_special
self.n_ctx = n_ctx
2019-01-29 16:54:18 +08:00
self.n_positions = n_positions
2019-01-08 19:26:58 +08:00
self.n_embd = n_embd
self.n_layer = n_layer
self.n_head = n_head
self.afn = afn
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.initializer_range = initializer_range
else:
raise ValueError(
"First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)"
)
2019-01-08 19:26:58 +08:00
@property
def total_tokens_embeddings(self):
return self.vocab_size + self.n_special
2019-01-08 19:26:58 +08:00
@classmethod
def from_dict(cls, json_object):
"""Constructs a `OpenAIGPTConfig` from a Python dictionary of parameters."""
config = OpenAIGPTConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `OpenAIGPTConfig` from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
2019-01-08 19:26:58 +08:00
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
2019-01-07 19:55:36 +08:00
class Conv1D(nn.Module):
def __init__(self, nf, rf, nx):
super(Conv1D, self).__init__()
self.rf = rf
self.nf = nf
if rf == 1: # faster 1x1 conv
w = torch.empty(nx, nf)
nn.init.normal_(w, std=0.02)
2019-01-08 19:26:58 +08:00
self.weight = Parameter(w)
self.bias = Parameter(torch.zeros(nf))
2019-01-07 19:55:36 +08:00
else: # was used to train LM
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.nf,)
2019-01-08 19:26:58 +08:00
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
2019-01-07 19:55:36 +08:00
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class Attention(nn.Module):
2019-01-09 07:12:43 +08:00
def __init__(self, nx, n_ctx, config, scale=False):
2019-01-07 19:55:36 +08:00
super(Attention, self).__init__()
n_state = nx # in Attention: n_state=768 (nx=n_embd)
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
2019-01-09 07:12:43 +08:00
assert n_state % config.n_head == 0
2019-01-29 16:54:18 +08:00
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
2019-01-09 07:12:43 +08:00
self.n_head = config.n_head
2019-01-07 19:55:36 +08:00
self.split_size = n_state
self.scale = scale
self.c_attn = Conv1D(n_state * 3, 1, nx)
self.c_proj = Conv1D(n_state, 1, nx)
2019-01-09 07:12:43 +08:00
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
2019-01-07 19:55:36 +08:00
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
2019-01-29 16:54:18 +08:00
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights
2019-01-08 23:24:23 +08:00
# XD: self.b may be larger than w, so we need to crop it
2019-01-29 16:54:18 +08:00
b = self.bias[:, :, : w.size(-2), : w.size(-1)]
2019-01-08 23:24:23 +08:00
w = w * b + -1e9 * (1 - b)
2019-01-07 19:55:36 +08:00
w = nn.Softmax(dim=-1)(w)
w = self.attn_dropout(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
a = self.resid_dropout(a)
return a
class MLP(nn.Module):
2019-01-09 07:12:43 +08:00
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd)
2019-01-07 19:55:36 +08:00
super(MLP, self).__init__()
2019-01-09 07:12:43 +08:00
nx = config.n_embd
2019-01-07 19:55:36 +08:00
self.c_fc = Conv1D(n_state, 1, nx)
self.c_proj = Conv1D(nx, 1, n_state)
2019-01-09 07:12:43 +08:00
self.act = ACT_FNS[config.afn]
self.dropout = nn.Dropout(config.resid_pdrop)
2019-01-07 19:55:36 +08:00
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return self.dropout(h2)
class Block(nn.Module):
2019-01-09 07:12:43 +08:00
def __init__(self, n_ctx, config, scale=False):
2019-01-07 19:55:36 +08:00
super(Block, self).__init__()
2019-01-09 07:12:43 +08:00
nx = config.n_embd
self.attn = Attention(nx, n_ctx, config, scale)
2019-01-07 19:55:36 +08:00
self.ln_1 = LayerNorm(nx)
2019-01-09 07:12:43 +08:00
self.mlp = MLP(4 * nx, config)
2019-01-07 19:55:36 +08:00
self.ln_2 = LayerNorm(nx)
def forward(self, x):
a = self.attn(x)
n = self.ln_1(x + a)
m = self.mlp(n)
h = self.ln_2(n + m)
return h
2019-01-08 19:26:58 +08:00
class OpenAIGPTLMHead(nn.Module):
2019-01-07 19:55:36 +08:00
""" Language Model Head for the transformer """
2019-01-09 07:12:43 +08:00
def __init__(self, model_embeddings_weights, config):
2019-01-08 19:26:58 +08:00
super(OpenAIGPTLMHead, self).__init__()
2019-01-09 07:12:43 +08:00
self.n_embd = config.n_embd
2019-01-08 19:26:58 +08:00
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
2019-01-07 19:55:36 +08:00
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
2019-01-07 19:55:36 +08:00
2019-01-08 23:24:23 +08:00
def forward(self, hidden_state):
2019-01-07 19:55:36 +08:00
# Truncated Language modeling logits (we remove the last token)
2019-01-08 23:24:23 +08:00
# h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
lm_logits = self.decoder(hidden_state)
2019-01-07 19:55:36 +08:00
return lm_logits
2019-01-08 23:24:23 +08:00
class OpenAIGPTMultipleChoiceHead(nn.Module):
2019-01-07 19:55:36 +08:00
""" Classifier Head for the transformer """
2019-01-09 07:12:43 +08:00
def __init__(self, config):
2019-01-08 23:24:23 +08:00
super(OpenAIGPTMultipleChoiceHead, self).__init__()
2019-01-09 07:12:43 +08:00
self.n_embd = config.n_embd
2019-01-08 23:24:23 +08:00
# self.multiple_choice_token = multiple_choice_token
2019-01-09 07:12:43 +08:00
self.dropout = nn.Dropout2d(config.resid_pdrop) # To reproduce the noise_shape parameter of TF implementation
self.linear = nn.Linear(config.n_embd, 1)
2019-01-07 19:55:36 +08:00
nn.init.normal_(self.linear.weight, std=0.02)
2019-01-07 19:55:36 +08:00
nn.init.normal_(self.linear.bias, 0)
def forward(self, hidden_states, mc_token_mask):
2019-01-07 19:55:36 +08:00
# Classification logits
2019-01-08 23:24:23 +08:00
# hidden_states = hidden_states.view(-1, self.n_embd)
# mc_token_mask = mc_token_mask.view(-1, 1).expand_as(hidden_states)
mc_token_mask = mc_token_mask.float()
multiple_choice_h = hidden_states * mc_token_mask.unsqueeze(-1)
2019-01-08 23:24:23 +08:00
multiple_choice_h = multiple_choice_h.sum(dim=-2)
# flat = x[..., 0].contiguous().view(-1)
# multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
# multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
# # This double transposition is there to replicate the behavior
# # of the noise_shape argument in the tensorflow
# # implementation. For more details, see
# # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
# multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
# multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
return multiple_choice_logits
class OpenAIGPTPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
2019-01-08 23:24:23 +08:00
def __init__(self, config, *inputs, **kwargs):
super(OpenAIGPTPreTrainedModel, self).__init__()
if not isinstance(config, OpenAIGPTConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `OpenAIGPTConfig`. "
"To create a model from a pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
)
)
2019-01-08 23:24:23 +08:00
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
2019-01-07 19:55:36 +08:00
2019-01-08 23:24:23 +08:00
def set_num_special_tokens(self, num_special_tokens):
pass
@classmethod
def from_pretrained(
cls, pretrained_model_name, num_special_tokens=None, state_dict=None, cache_dir=None, from_tf=False, *inputs, **kwargs
):
2019-01-08 23:24:23 +08:00
"""
Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
Params:
pretrained_model_name: either:
- a str with the name of a pre-trained model to load selected in the list of:
. `openai-gpt`
- a path or url to a pretrained model archive containing:
. `openai_gpt_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. a series of NumPy files containing OpenAI TensorFlow trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
2019-01-08 23:24:23 +08:00
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
else:
archive_file = pretrained_model_name
# redirect to the cache, if necessary
try:
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
except FileNotFoundError:
logger.error(
"Model name '{}' was not found in model name list ({}). "
"We assumed '{}' was a path or url but couldn't find any file "
"associated to this path or url.".format(
pretrained_model_name, ", ".join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()), archive_file
)
)
2019-01-08 23:24:23 +08:00
return None
if resolved_archive_file == archive_file:
logger.info("loading archive file {}".format(archive_file))
else:
logger.info("loading archive file {} from cache at {}".format(archive_file, resolved_archive_file))
2019-01-08 23:24:23 +08:00
tempdir = None
if os.path.isdir(resolved_archive_file):
serialization_dir = resolved_archive_file
else:
# Extract archive to temp dir
tempdir = tempfile.mkdtemp()
logger.info("extracting archive file {} to temp dir {}".format(resolved_archive_file, tempdir))
with tarfile.open(resolved_archive_file, "r:gz") as archive:
2019-01-08 23:24:23 +08:00
archive.extractall(tempdir)
serialization_dir = tempdir
# Load config
config_file = os.path.join(serialization_dir, CONFIG_NAME)
config = OpenAIGPTConfig.from_json_file(config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None and not from_tf:
2019-01-08 23:24:23 +08:00
weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None)
if tempdir:
# Clean up temp dir
shutil.rmtree(tempdir)
if from_tf:
# Directly load from a TensorFlow checkpoint (stored as NumPy array)
return load_tf_weights_in_openai_gpt(model, serialization_dir)
2019-01-08 23:24:23 +08:00
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
2019-01-29 16:54:18 +08:00
if key.endswith(".g"):
new_key = key[:-2] + ".weight"
elif key.endswith(".b"):
new_key = key[:-2] + ".bias"
elif key.endswith(".w"):
new_key = key[:-2] + ".weight"
2019-01-08 23:24:23 +08:00
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
2019-01-08 23:24:23 +08:00
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=""):
2019-01-08 23:24:23 +08:00
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs
)
2019-01-08 23:24:23 +08:00
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
2019-01-29 16:54:18 +08:00
start_model = model
if hasattr(model, "transformer") and all(not s.startswith('transformer.') for s in state_dict.keys()):
2019-01-29 00:47:29 +08:00
start_model = model.transformer
load(start_model, prefix="")
2019-01-08 23:24:23 +08:00
if len(missing_keys) > 0:
logger.info(
"Weights of {} not initialized from pretrained model: {}".format(model.__class__.__name__, missing_keys)
)
2019-01-08 23:24:23 +08:00
if len(unexpected_keys) > 0:
logger.info(
"Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)
)
2019-01-08 23:24:23 +08:00
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(model.__class__.__name__, "\n\t".join(error_msgs))
)
2019-01-08 23:24:23 +08:00
# Add additional embeddings for special tokens if needed
# This step also make sure we are still sharing the output and input embeddings after loading weights
model.set_num_special_tokens(num_special_tokens if num_special_tokens is not None else config.n_special)
2019-01-08 23:24:23 +08:00
return model
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
2019-01-09 07:12:43 +08:00
"""OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
2019-01-09 07:12:43 +08:00
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
2019-01-09 07:12:43 +08:00
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
2019-01-09 07:12:43 +08:00
You should use the associate indices to index the embeddings.
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
2019-01-09 07:12:43 +08:00
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
2019-01-09 07:12:43 +08:00
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
2019-01-09 07:12:43 +08:00
Outputs:
`hidden_states`: the encoded-hidden-states at the top of the model
as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
(or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTModel(config)
hidden_states = model(input_ids)
```
"""
2019-01-09 07:12:43 +08:00
def __init__(self, config):
super(OpenAIGPTModel, self).__init__(config)
num_tokens = config.vocab_size + config.n_special
self.tokens_embed = nn.Embedding(num_tokens, config.n_embd)
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
2019-01-09 07:12:43 +08:00
self.drop = nn.Dropout(config.embd_pdrop)
block = Block(config.n_ctx, config, scale=True)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
self.apply(self.init_weights)
# nn.init.normal_(self.embed.weight, std=0.02)
def set_num_special_tokens(self, num_special_tokens):
" Update input embeddings with new embedding matrice if needed "
if self.config.n_special == num_special_tokens:
return
2019-01-08 19:26:58 +08:00
# Update config
self.config.n_special = num_special_tokens
# # Build new embeddings and initialize
old_embed = self.tokens_embed
self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
2019-01-08 19:26:58 +08:00
# Initialize all new embeddings (in particular the special tokens)
self.init_weights(self.tokens_embed)
2019-01-08 19:26:58 +08:00
# Copy word and positional embeddings from the previous weights
self.tokens_embed.weight.data[: self.config.vocab_size, :] = old_embed.weight.data[: self.config.vocab_size, :]
self.tokens_embed.weight.data[-self.config.n_positions :, :] = old_embed.weight.data[-self.config.n_positions :, :]
2019-01-07 19:55:36 +08:00
2019-01-08 23:24:23 +08:00
def forward(self, input_ids, position_ids=None, token_type_ids=None):
if position_ids is None:
# This was used when we had a single embedding matrice from position and token embeddings
# start = self.config.vocab_size + self.config.n_special
# end = start + input_ids.size(-1)
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
2019-01-08 23:24:23 +08:00
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
position_ids = position_ids.view(-1, position_ids.size(-1))
inputs_embeds = self.tokens_embed(input_ids)
position_embeds = self.positions_embed(position_ids)
2019-01-08 23:24:23 +08:00
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
token_type_embeds = self.tokens_embed(token_type_ids)
2019-01-08 23:24:23 +08:00
else:
token_type_embeds = 0
2019-01-08 19:26:58 +08:00
# Add the position information to the input embeddings
2019-01-08 23:24:23 +08:00
# h = e.sum(dim=2)
hidden_states = inputs_embeds + position_embeds + token_type_embeds
2019-01-08 19:26:58 +08:00
for block in self.h:
2019-01-08 23:24:23 +08:00
hidden_states = block(hidden_states)
return hidden_states.view(*input_shape, hidden_states.size(-1))
2019-01-07 19:55:36 +08:00
2019-01-08 23:24:23 +08:00
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
2019-01-09 07:12:43 +08:00
"""OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
2019-01-09 07:12:43 +08:00
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
2019-01-09 07:12:43 +08:00
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
2019-01-09 07:12:43 +08:00
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
2019-01-09 07:12:43 +08:00
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
2019-01-09 07:12:43 +08:00
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
2019-01-09 07:12:43 +08:00
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., vocab_size]
Outputs:
if `lm_labels` is not `None`:
Outputs the language modeling loss.
else:
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
(or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
2019-01-09 07:12:43 +08:00
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits = model(input_ids)
```
"""
2019-01-09 07:12:43 +08:00
def __init__(self, config):
super(OpenAIGPTLMHeadModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
2019-01-08 23:24:23 +08:00
self.apply(self.init_weights)
def set_num_special_tokens(self, num_special_tokens):
" Update input and output embeddings with new embedding matrice "
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
2019-01-08 23:24:23 +08:00
def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
if lm_labels is not None:
2019-01-09 00:18:47 +08:00
loss_fct = CrossEntropyLoss(ignore_index=-1)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
2019-01-08 23:24:23 +08:00
return loss
return lm_logits
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
2019-01-09 07:12:43 +08:00
"""OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").
OpenAI GPT use a single embedding matrix to store the word and special embeddings.
Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
Special tokens need to be trained during the fine-tuning if you use them.
The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.
The embeddings are ordered as follow in the token embeddings matrice:
2019-01-09 07:12:43 +08:00
[0, ----------------------
... -> word embeddings
config.vocab_size - 1, ______________________
config.vocab_size,
... -> special embeddings
config.vocab_size + config.n_special - 1] ______________________
2019-01-09 07:12:43 +08:00
where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
total_tokens_embeddings = config.vocab_size + config.n_special
You should use the associate indices to index the embeddings.
2019-01-09 07:12:43 +08:00
Params:
config: a OpenAIGPTConfig class instance with the configuration to build a new model
Inputs:
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
2019-01-09 07:12:43 +08:00
`position_ids`: an optional torch.LongTensor with the same shape as input_ids
with the position indices (selected in the range [0, config.n_positions - 1[.
2019-01-09 07:12:43 +08:00
`token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
You can use it to add a third type of embedding to each input token in the sequence
(the previous two being the word and position embeddings).
The input, position and token_type embeddings are summed inside the Transformer before the first
self-attention block.
2019-01-09 07:12:43 +08:00
`lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
is only computed for the labels set in [0, ..., total_tokens_embeddings]
2019-01-09 07:12:43 +08:00
`multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
with indices selected in [0, ..., num_choices].
Outputs:
if `lm_labels` and `multiple_choice_labels` are not `None`:
Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
else: a tuple with
`lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
2019-01-09 07:12:43 +08:00
`multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]
Example usage:
```python
# Already been converted into BPE token ids
input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
mc_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
2019-01-09 07:12:43 +08:00
config = modeling_openai.OpenAIGPTConfig()
model = modeling_openai.OpenAIGPTLMHeadModel(config)
lm_logits, multiple_choice_logits = model(input_ids, mc_token_mask)
2019-01-09 07:12:43 +08:00
```
"""
2019-01-09 07:12:43 +08:00
def __init__(self, config):
super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
self.transformer = OpenAIGPTModel(config)
self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
2019-01-09 07:12:43 +08:00
self.multiple_choice_head = OpenAIGPTMultipleChoiceHead(config)
2019-01-08 19:26:58 +08:00
self.apply(self.init_weights)
2019-01-07 19:55:36 +08:00
2019-01-08 19:26:58 +08:00
def set_num_special_tokens(self, num_special_tokens):
" Update input and output embeddings with new embedding matrice "
self.transformer.set_num_special_tokens(num_special_tokens)
self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
2019-01-07 19:55:36 +08:00
def forward(self, input_ids, mc_token_mask, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None):
2019-01-08 23:24:23 +08:00
hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
lm_logits = self.lm_head(hidden_states)
mc_logits = self.multiple_choice_head(hidden_states, mc_token_mask)
2019-01-08 19:26:58 +08:00
losses = []
if lm_labels is not None:
2019-01-08 23:24:23 +08:00
loss_fct = CrossEntropyLoss(ignore_index=-1)
losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
if mc_labels is not None:
2019-01-08 19:26:58 +08:00
loss_fct = CrossEntropyLoss()
losses.append(loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)))
2019-01-08 19:26:58 +08:00
if losses:
return losses
return lm_logits, mc_logits