transformers/tests/test_modeling_tf_common.py

552 lines
23 KiB
Python
Raw Normal View History

2019-09-05 08:27:39 +08:00
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2019-12-22 23:20:32 +08:00
2019-09-05 08:27:39 +08:00
import copy
import os
2019-09-05 08:27:39 +08:00
import random
import tempfile
import unittest
from importlib import import_module
2019-09-05 08:27:39 +08:00
from transformers import is_tf_available, is_torch_available
from transformers.modeling_tf_utils import TFMainLayer
from .utils import _tf_gpu_memory_limit, require_tf
if is_tf_available():
2019-09-05 08:53:52 +08:00
import tensorflow as tf
2019-09-24 04:08:08 +08:00
import numpy as np
from transformers import tf_top_k_top_p_filtering
if _tf_gpu_memory_limit is not None:
gpus = tf.config.list_physical_devices("GPU")
for gpu in gpus:
# Restrict TensorFlow to only allocate x GB of memory on the GPUs
try:
tf.config.experimental.set_virtual_device_configuration(
gpu, [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)]
)
logical_gpus = tf.config.experimental.list_logical_devices("GPU")
print("Logical GPUs", logical_gpus)
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
2019-09-05 08:27:39 +08:00
2019-09-05 08:27:39 +08:00
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key:
2019-09-05 08:27:39 +08:00
setattr(configs_no_init, key, 0.0)
return configs_no_init
@require_tf
class TFModelTesterMixin:
model_tester = None
all_model_classes = ()
all_generative_model_classes = ()
test_torchscript = True
test_pruning = True
test_resize_embeddings = True
is_encoder_decoder = False
def test_initialization(self):
pass
# config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# configs_no_init = _config_zero_init(config)
# for model_class in self.all_model_classes:
# model = model_class(config=configs_no_init)
# for name, param in model.named_parameters():
# if param.requires_grad:
# self.assertIn(param.data.mean().item(), [0.0, 1.0],
# msg="Parameter {} of model {} seems not properly initialized".format(name, model_class))
def test_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs = model(inputs_dict)
2019-12-23 01:12:11 +08:00
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
after_outputs = model(inputs_dict)
self.assert_outputs_same(after_outputs, outputs)
def test_keras_save_load(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
tf_main_layer_classes = set(
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__),)
for module_member_name in dir(module)
for module_member in (getattr(module, module_member_name),)
if isinstance(module_member, type) and TFMainLayer in module_member.__bases__
)
for main_layer_class in tf_main_layer_classes:
main_layer = main_layer_class(config)
symbolic_inputs = {
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items()
}
model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs))
outputs = model(inputs_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "keras_model.h5")
model.save(filepath)
model = tf.keras.models.load_model(
filepath, custom_objects={main_layer_class.__name__: main_layer_class}
)
assert isinstance(model, tf.keras.Model)
after_outputs = model(inputs_dict)
self.assert_outputs_same(after_outputs, outputs)
def assert_outputs_same(self, after_outputs, outputs):
# Make sure we don't have nans
out_1 = after_outputs[0].numpy()
out_2 = outputs[0].numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def test_pt_tf_model_equivalence(self):
if not is_torch_available():
return
2019-09-24 04:08:08 +08:00
import torch
import transformers
2019-09-24 04:08:08 +08:00
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
2019-09-24 04:08:08 +08:00
for model_class in self.all_model_classes:
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beggining
pt_model_class = getattr(transformers, pt_model_class_name)
2019-09-24 04:08:08 +08:00
config.output_hidden_states = True
tf_model = model_class(config)
pt_model = pt_model_class(config)
2019-09-24 04:08:08 +08:00
# Check we can load pt model in tf and vice-versa with model => model functions
tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=inputs_dict)
pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict, training=False)
tf_hidden_states = tfo[0].numpy()
pt_hidden_states = pto[0].numpy()
tf_nans = np.copy(np.isnan(tf_hidden_states))
pt_nans = np.copy(np.isnan(pt_hidden_states))
pt_hidden_states[tf_nans] = 0
tf_hidden_states[tf_nans] = 0
pt_hidden_states[pt_nans] = 0
tf_hidden_states[pt_nans] = 0
max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
# Debug info (remove when fixed)
if max_diff >= 2e-2:
print("===")
print(model_class)
print(config)
print(inputs_dict)
print(pt_inputs_dict)
self.assertLessEqual(max_diff, 2e-2)
# Check we can load pt model in tf and vice-versa with checkpoint => model functions
2019-12-23 01:12:11 +08:00
with tempfile.TemporaryDirectory() as tmpdirname:
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
torch.save(pt_model.state_dict(), pt_checkpoint_path)
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
tf_model.save_weights(tf_checkpoint_path)
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
# Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
pt_model.eval()
pt_inputs_dict = dict(
(name, torch.from_numpy(key.numpy()).to(torch.long)) for name, key in inputs_dict.items()
)
with torch.no_grad():
pto = pt_model(**pt_inputs_dict)
tfo = tf_model(inputs_dict)
tfo = tfo[0].numpy()
pto = pto[0].numpy()
tf_nans = np.copy(np.isnan(tfo))
pt_nans = np.copy(np.isnan(pto))
pto[tf_nans] = 0
tfo[tf_nans] = 0
pto[pt_nans] = 0
tfo[pt_nans] = 0
max_diff = np.amax(np.abs(tfo - pto))
self.assertLessEqual(max_diff, 2e-2)
def test_compile_tf_model(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if self.is_encoder_decoder:
input_ids = {
"decoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="decoder_input_ids", dtype="int32"),
"encoder_input_ids": tf.keras.Input(batch_shape=(2, 2000), name="encoder_input_ids", dtype="int32"),
}
else:
input_ids = tf.keras.Input(batch_shape=(2, 2000), name="input_ids", dtype="int32")
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
metric = tf.keras.metrics.SparseCategoricalAccuracy("accuracy")
for model_class in self.all_model_classes:
# Prepare our model
model = model_class(config)
# Let's load it from the disk to be sure we can use pretrained weights
2019-12-23 01:12:11 +08:00
with tempfile.TemporaryDirectory() as tmpdirname:
outputs = model(inputs_dict) # build the model
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)
outputs_dict = model(input_ids)
hidden_states = outputs_dict[0]
# Add a dense layer on top to test intetgration with other keras modules
outputs = tf.keras.layers.Dense(2, activation="softmax", name="outputs")(hidden_states)
# Compile extended model
extended_model = tf.keras.Model(inputs=[input_ids], outputs=[outputs])
extended_model.compile(optimizer=optimizer, loss=loss, metrics=[metric])
def test_keyword_and_dict_args(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
outputs_dict = model(inputs_dict)
inputs_keywords = copy.deepcopy(inputs_dict)
input_ids = inputs_keywords.pop("input_ids" if not self.is_encoder_decoder else "decoder_input_ids", None,)
outputs_keywords = model(input_ids, **inputs_keywords)
output_dict = outputs_dict[0].numpy()
output_keywords = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
decoder_seq_length = (
self.model_tester.decoder_seq_length
if hasattr(self.model_tester, "decoder_seq_length")
else self.model_tester.seq_length
)
encoder_seq_length = (
self.model_tester.encoder_seq_length
if hasattr(self.model_tester, "encoder_seq_length")
else self.model_tester.seq_length
)
decoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else decoder_seq_length
)
encoder_key_length = (
self.model_tester.key_length if hasattr(self.model_tester, "key_length") else encoder_seq_length
)
for model_class in self.all_model_classes:
config.output_attentions = True
config.output_hidden_states = False
model = model_class(config)
outputs = model(inputs_dict)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
2019-12-10 05:13:57 +08:00
if self.is_encoder_decoder:
self.assertEqual(out_len % 2, 0)
decoder_attentions = outputs[(out_len // 2) - 1]
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, False)
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
2019-09-05 08:27:39 +08:00
# Check attention is always last and order is fine
config.output_attentions = True
config.output_hidden_states = True
model = model_class(config)
outputs = model(inputs_dict)
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
self.assertEqual(model.config.output_attentions, True)
self.assertEqual(model.config.output_hidden_states, True)
attentions = [t.numpy() for t in outputs[-1]]
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
config.output_hidden_states = True
config.output_attentions = False
model = model_class(config)
outputs = model(inputs_dict)
hidden_states = [t.numpy() for t in outputs[-1]]
self.assertEqual(model.config.output_attentions, False)
self.assertEqual(model.config.output_hidden_states, True)
self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size],
)
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
x = model.get_output_embeddings()
assert x is None or isinstance(x, tf.keras.layers.Layer)
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
first, second = (
model(inputs_dict, training=False)[0],
model(inputs_dict, training=False)[0],
)
out_1 = first.numpy()
out_2 = second.numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
def _get_embeds(self, wte, input_ids):
# ^^ In our TF models, the input_embeddings can take slightly different forms,
# so we try a few of them.
# We used to fall back to just synthetically creating a dummy tensor of ones:
try:
x = wte(input_ids, mode="embedding")
except Exception:
2019-12-10 22:11:07 +08:00
try:
x = wte([input_ids], mode="embedding")
2019-12-22 03:22:05 +08:00
except Exception:
2019-12-10 22:11:07 +08:00
try:
x = wte([input_ids, None, None, None], mode="embedding")
2019-12-22 03:22:05 +08:00
except Exception:
if hasattr(self.model_tester, "embedding_size"):
x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32,)
else:
x = tf.ones(input_ids.shape + [self.model_tester.hidden_size], dtype=tf.dtypes.float32,)
return x
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.is_encoder_decoder:
input_ids = inputs_dict["input_ids"]
del inputs_dict["input_ids"]
else:
encoder_input_ids = inputs_dict["encoder_input_ids"]
decoder_input_ids = inputs_dict["decoder_input_ids"]
del inputs_dict["encoder_input_ids"]
del inputs_dict["decoder_input_ids"]
for model_class in self.all_model_classes:
model = model_class(config)
wte = model.get_input_embeddings()
2019-12-10 22:11:07 +08:00
if not self.is_encoder_decoder:
inputs_dict["inputs_embeds"] = self._get_embeds(wte, input_ids)
2019-12-10 22:11:07 +08:00
else:
inputs_dict["encoder_inputs_embeds"] = self._get_embeds(wte, encoder_input_ids)
inputs_dict["decoder_inputs_embeds"] = self._get_embeds(wte, decoder_input_ids)
2019-12-24 05:31:39 +08:00
model(inputs_dict)
2019-11-12 11:19:14 +08:00
def test_lm_head_model_random_generate(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict.get(
"input_ids", None
) # TODO (PVP): ugly workaround to make code work for t5 for the moment - has to changed when t5 is fixed.
for model_class in self.all_generative_model_classes:
# TODO (PVP): add beam search tests when beam search is implemented
model = model_class(config)
if config.bos_token_id is None:
with self.assertRaises(AssertionError):
model.generate(max_length=5)
# batch_size = 1
self._check_generated_tokens(model.generate(input_ids))
else:
# batch_size = 1
self._check_generated_tokens(model.generate(max_length=5))
# batch_size = 1, num_beams > 1
# batch_size > 1, sample
self._check_generated_tokens(model.generate(input_ids, num_return_sequences=3))
# batch_size > 1, greedy
self._check_generated_tokens(model.generate(input_ids, do_sample=False, num_return_sequences=3))
def _check_generated_tokens(self, output_ids):
for token_id in output_ids[0].numpy().tolist():
self.assertGreaterEqual(token_id, 0)
self.assertLess(token_id, self.model_tester.vocab_size)
2019-09-05 08:27:39 +08:00
2019-09-18 18:17:21 +08:00
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None):
2019-09-05 08:27:39 +08:00
"""Creates a random int32 tensor of the shape within the vocab size."""
if rng is None:
rng = random.Random()
total_dims = 1
for dim in shape:
total_dims *= dim
values = []
for _ in range(total_dims):
values.append(rng.randint(0, vocab_size - 1))
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32)
2019-09-18 18:17:21 +08:00
return output
@require_tf
class UtilsFunctionsTest(unittest.TestCase):
# tests whether the top_k_top_p_filtering function behaves as expected
def test_top_k_top_p_filtering(self):
logits = tf.convert_to_tensor(
[
[
8.2220991, # 3rd highest value; idx. 0
-0.5620044,
5.23229752,
4.0386393,
-6.8798378,
-0.54785802,
-3.2012153,
2.92777176,
1.88171953,
7.35341276, # 5th highest value; idx. 9
8.43207833, # 2nd highest value; idx. 10
-9.85711836,
-5.96209236,
-1.13039161,
-7.1115294,
-0.8369633,
-5.3186408,
7.06427407,
0.81369344,
-0.82023817,
-5.9179796,
0.58813443,
-6.99778438,
4.71551189,
-0.18771637,
7.44020759, # 4th highest value; idx. 25
9.38450987, # 1st highest value; idx. 26
2.12662941,
-9.32562038,
2.35652522,
], # cummulative prob of 5 highest values <= 0.6
[
0.58425518,
4.53139238,
-5.57510464,
-6.28030699,
-7.19529503,
-4.02122551,
1.39337037,
-6.06707057,
1.59480517,
-9.643119,
0.03907799,
0.67231762,
-8.88206726,
6.27115922, # 4th highest value; idx. 13
2.28520723,
4.82767506,
4.30421368,
8.8275313, # 2nd highest value; idx. 17
5.44029958, # 5th highest value; idx. 18
-4.4735794,
7.38579536, # 3rd highest value; idx. 20
-2.91051663,
2.61946077,
-2.5674762,
-9.48959302,
-4.02922645,
-1.35416918,
9.67702323, # 1st highest value; idx. 27
-5.89478553,
1.85370467,
], # cummulative prob of 5 highest values <= 0.6
],
dtype=tf.float32,
)
non_inf_expected_idx = tf.convert_to_tensor(
[[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]], dtype=tf.int32,
) # expected non filtered idx as noted above
non_inf_expected_output = tf.convert_to_tensor(
[8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
dtype=tf.float32,
) # expected non filtered values as noted above
output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
non_inf_output = output[output != -float("inf")]
non_inf_idx = tf.cast(
tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))), dtype=tf.int32,
)
tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)