transformers.js/examples/webgpu-clip/main.js

170 lines
5.4 KiB
JavaScript

import {
AutoTokenizer,
CLIPTextModelWithProjection,
AutoProcessor,
CLIPVisionModelWithProjection,
RawImage,
dot,
softmax,
} from '@xenova/transformers';
import './style.css';
// Reference the elements that we will need
const status = document.getElementById('status');
const container = document.getElementById('container');
const video = document.getElementById('video');
const labelsInput = document.getElementById('labels');
const templateInput = document.getElementById('template');
const overlay = document.getElementById('overlay');
status.textContent = 'Loading model (300MB)...';
// Use fp16 if available, otherwise use fp32
async function hasFp16() {
try {
const adapter = await navigator.gpu.requestAdapter();
return adapter.features.has('shader-f16');
} catch (e) {
return false;
}
}
const dtype = (await hasFp16()) ? 'fp16' : 'fp32';
// Load object detection pipeline
const model_id = 'Xenova/clip-vit-base-patch16';
let tokenizer, text_model, processor, vision_model;
try {
// Load tokenizer and text model
tokenizer = await AutoTokenizer.from_pretrained(model_id);
text_model = await CLIPTextModelWithProjection.from_pretrained(model_id, {
device: 'webgpu',
dtype,
});
// Load processor and vision model
processor = await AutoProcessor.from_pretrained(model_id);
vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id, {
device: 'webgpu',
dtype,
});
} catch (err) {
status.textContent = err.message;
alert(err.message)
throw err;
}
labelsInput.disabled = false;
templateInput.disabled = false;
status.textContent = 'Ready';
// See `model.logit_scale` parameter of original model
const exp_logit_scale = Math.exp(4.6052);
const IMAGE_SIZE = 224;
const canvas = document.createElement('canvas');
canvas.width = canvas.height = IMAGE_SIZE;
const context = canvas.getContext('2d', { willReadFrequently: true });
let isProcessing = false;
let previousTime;
let textEmbeddings;
let prevTextInputs;
let prevTemplate;
let labels;
function onFrameUpdate() {
if (!isProcessing) {
isProcessing = true;
(async function () {
// If text inputs have changed, update the embeddings
if (prevTextInputs !== labelsInput.value || prevTemplate !== templateInput.value) {
textEmbeddings = null;
prevTextInputs = labelsInput.value;
prevTemplate = templateInput.value;
labels = prevTextInputs.split(/\s*,\s*/).filter(x => x);
if (labels.length > 0) {
const texts = labels.map(x => templateInput.value.replaceAll('{}', x));
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
// Compute embeddings
const { text_embeds } = await text_model(text_inputs);
textEmbeddings = text_embeds.normalize().tolist();
} else {
overlay.innerHTML = '';
}
}
if (textEmbeddings) {
// Read the current frame from the video
context.drawImage(video, 0, 0, IMAGE_SIZE, IMAGE_SIZE);
const pixelData = context.getImageData(0, 0, IMAGE_SIZE, IMAGE_SIZE).data;
const image = new RawImage(pixelData, IMAGE_SIZE, IMAGE_SIZE, 4);
const image_inputs = await processor(image);
// Compute embeddings
const { image_embeds } = await vision_model(image_inputs);
const imageEmbedding = image_embeds.normalize().tolist()[0];
// Compute similarity
const similarities = textEmbeddings.map(
x => dot(x, imageEmbedding) * exp_logit_scale
);
const sortedIndices = softmax(similarities)
.map((x, i) => [x, i])
.sort((a, b) => b[0] - a[0]);
// Update UI
overlay.innerHTML = '';
for (const [score, index] of sortedIndices) {
overlay.appendChild(document.createTextNode(`${labels[index]}: ${score.toFixed(2)}`));
overlay.appendChild(document.createElement('br'));
}
}
if (previousTime !== undefined) {
const fps = 1000 / (performance.now() - previousTime);
status.textContent = `FPS: ${fps.toFixed(2)}`;
}
previousTime = performance.now();
isProcessing = false;
})();
}
window.requestAnimationFrame(onFrameUpdate);
}
// Start the video stream
navigator.mediaDevices.getUserMedia(
{ video: true }, // Ask for video
).then((stream) => {
// Set up the video and canvas elements.
video.srcObject = stream;
video.play();
const videoTrack = stream.getVideoTracks()[0];
const { width, height } = videoTrack.getSettings();
video.width = width;
video.height = height;
// Set container width and height depending on the image aspect ratio
const ar = width / height;
const [cw, ch] = (ar > 720 / 405) ? [720, 720 / ar] : [405 * ar, 405];
container.style.width = `${cw}px`;
container.style.height = `${ch}px`;
// Start the animation loop
window.requestAnimationFrame(onFrameUpdate);
}).catch((error) => {
alert(error);
});