swift-nio/Sources/NIOCore/EventLoopFuture.swift

2311 lines
103 KiB
Swift
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===----------------------------------------------------------------------===//
//
// This source file is part of the SwiftNIO open source project
//
// Copyright (c) 2017-2020 Apple Inc. and the SwiftNIO project authors
// Licensed under Apache License v2.0
//
// See LICENSE.txt for license information
// See CONTRIBUTORS.txt for the list of SwiftNIO project authors
//
// SPDX-License-Identifier: Apache-2.0
//
//===----------------------------------------------------------------------===//
import NIOConcurrencyHelpers
import Dispatch
/// Internal list of callbacks.
///
/// Most of these are closures that pull a value from one future, call a user callback, push the
/// result into another, then return a list of callbacks from the target future that are now ready to be invoked.
///
/// In particular, note that _run() here continues to obtain and execute lists of callbacks until it completes.
/// This eliminates recursion when processing `flatMap()` chains.
@usableFromInline
internal struct CallbackList {
#if swift(>=5.7)
@usableFromInline
internal typealias Element = @Sendable () -> CallbackList
#else
@usableFromInline
internal typealias Element = () -> CallbackList
#endif
@usableFromInline
internal var firstCallback: Optional<Element>
@usableFromInline
internal var furtherCallbacks: Optional<[Element]>
@inlinable
internal init() {
self.firstCallback = nil
self.furtherCallbacks = nil
}
@inlinable
internal mutating func append(_ callback: @escaping Element) {
if self.firstCallback == nil {
self.firstCallback = callback
} else {
if self.furtherCallbacks != nil {
self.furtherCallbacks!.append(callback)
} else {
self.furtherCallbacks = [callback]
}
}
}
@inlinable
internal func _allCallbacks() -> CircularBuffer<Element> {
switch (self.firstCallback, self.furtherCallbacks) {
case (.none, _):
return []
case (.some(let onlyCallback), .none):
return [onlyCallback]
default:
var array: CircularBuffer<Element> = []
self.appendAllCallbacks(&array)
return array
}
}
@inlinable
internal func appendAllCallbacks(_ array: inout CircularBuffer<Element>) {
switch (self.firstCallback, self.furtherCallbacks) {
case (.none, _):
return
case (.some(let onlyCallback), .none):
array.append(onlyCallback)
case (.some(let first), .some(let others)):
array.reserveCapacity(array.count + 1 + others.count)
array.append(first)
array.append(contentsOf: others)
}
}
@inlinable
internal func _run() {
switch (self.firstCallback, self.furtherCallbacks) {
case (.none, _):
return
case (.some(let onlyCallback), .none):
var onlyCallback = onlyCallback
loop: while true {
let cbl = onlyCallback()
switch (cbl.firstCallback, cbl.furtherCallbacks) {
case (.none, _):
break loop
case (.some(let ocb), .none):
onlyCallback = ocb
continue loop
case (.some(_), .some(_)):
var pending = cbl._allCallbacks()
while let f = pending.popFirst() {
let next = f()
next.appendAllCallbacks(&pending)
}
break loop
}
}
default:
var pending = self._allCallbacks()
while let f = pending.popFirst() {
let next = f()
next.appendAllCallbacks(&pending)
}
}
}
}
/// Internal error for operations that return results that were not replaced
@usableFromInline
internal struct OperationPlaceholderError: Error {
@usableFromInline
internal init() {}
}
/// A promise to provide a result later.
///
/// This is the provider API for `EventLoopFuture<Value>`. If you want to return an
/// unfulfilled `EventLoopFuture<Value>` -- presumably because you are interfacing to
/// some asynchronous service that will return a real result later, follow this
/// pattern:
///
/// ```
/// func someAsyncOperation(args) -> EventLoopFuture<ResultType> {
/// let promise = eventLoop.makePromise(of: ResultType.self)
/// someAsyncOperationWithACallback(args) { result -> Void in
/// // when finished...
/// promise.succeed(result)
/// // if error...
/// promise.fail(error)
/// }
/// return promise.futureResult
/// }
/// ```
///
/// Note that the future result is returned before the async process has provided a value.
///
/// It's actually not very common to use this directly. Usually, you really want one
/// of the following:
///
/// * If you have an `EventLoopFuture` and want to do something else after it completes,
/// use `.flatMap()`
/// * If you already have a value and need an `EventLoopFuture<>` object to plug into
/// some other API, create an already-resolved object with `eventLoop.makeSucceededFuture(result)`
/// or `eventLoop.newFailedFuture(error:)`.
///
/// - note: `EventLoopPromise` has reference semantics.
public struct EventLoopPromise<Value> {
/// The `EventLoopFuture` which is used by the `EventLoopPromise`. You can use it to add callbacks which are notified once the
/// `EventLoopPromise` is completed.
public let futureResult: EventLoopFuture<Value>
@inlinable
internal static func makeUnleakablePromise(eventLoop: EventLoop, line: UInt = #line) -> EventLoopPromise<Value> {
return EventLoopPromise<Value>(eventLoop: eventLoop,
file: "BUG in SwiftNIO (please report), unleakable promise leaked.",
line: line)
}
/// General initializer
///
/// - parameters:
/// - eventLoop: The event loop this promise is tied to.
/// - file: The file this promise was allocated in, for debugging purposes.
/// - line: The line this promise was allocated on, for debugging purposes.
@inlinable
internal init(eventLoop: EventLoop, file: StaticString, line: UInt) {
self.futureResult = EventLoopFuture<Value>(_eventLoop: eventLoop, file: file, line: line)
}
/// Deliver a successful result to the associated `EventLoopFuture<Value>` object.
///
/// - parameters:
/// - value: The successful result of the operation.
@inlinable
public func succeed(_ value: Value) {
self._resolve(value: .success(value))
}
/// Deliver an error to the associated `EventLoopFuture<Value>` object.
///
/// - parameters:
/// - error: The error from the operation.
@inlinable
public func fail(_ error: Error) {
self._resolve(value: .failure(error))
}
/// Complete the promise with the passed in `EventLoopFuture<Value>`.
///
/// This method is equivalent to invoking `future.cascade(to: promise)`,
/// but sometimes may read better than its cascade counterpart.
///
/// - parameters:
/// - future: The future whose value will be used to succeed or fail this promise.
/// - seealso: `EventLoopFuture.cascade(to:)`
@inlinable
public func completeWith(_ future: EventLoopFuture<Value>) {
future.cascade(to: self)
}
/// Complete the promise with the passed in `Result<Value, Error>`.
///
/// This method is equivalent to invoking:
/// ```
/// switch result {
/// case .success(let value):
/// promise.succeed(value)
/// case .failure(let error):
/// promise.fail(error)
/// }
/// ```
///
/// - parameters:
/// - result: The result which will be used to succeed or fail this promise.
@inlinable
public func completeWith(_ result: Result<Value, Error>) {
self._resolve(value: result)
}
/// Fire the associated `EventLoopFuture` on the appropriate event loop.
///
/// This method provides the primary difference between the `EventLoopPromise` and most
/// other `Promise` implementations: specifically, all callbacks fire on the `EventLoop`
/// that was used to create the promise.
///
/// - parameters:
/// - value: The value to fire the future with.
@inlinable
internal func _resolve(value: Result<Value, Error>) {
if self.futureResult.eventLoop.inEventLoop {
self._setValue(value: value)._run()
} else {
self.futureResult.eventLoop.execute {
self._setValue(value: value)._run()
}
}
}
/// Set the future result and get the associated callbacks.
///
/// - parameters:
/// - value: The result of the promise.
/// - returns: The callback list to run.
@inlinable
internal func _setValue(value: Result<Value, Error>) -> CallbackList {
return self.futureResult._setValue(value: value)
}
}
/// Holder for a result that will be provided later.
///
/// Functions that promise to do work asynchronously can return an `EventLoopFuture<Value>`.
/// The recipient of such an object can then observe it to be notified when the operation completes.
///
/// The provider of a `EventLoopFuture<Value>` can create and return a placeholder object
/// before the actual result is available. For example:
///
/// ```
/// func getNetworkData(args) -> EventLoopFuture<NetworkResponse> {
/// let promise = eventLoop.makePromise(of: NetworkResponse.self)
/// queue.async {
/// . . . do some work . . .
/// promise.succeed(response)
/// . . . if it fails, instead . . .
/// promise.fail(error)
/// }
/// return promise.futureResult
/// }
/// ```
///
/// Note that this function returns immediately; the promise object will be given a value
/// later on. This behaviour is common to Future/Promise implementations in many programming
/// languages. If you are unfamiliar with this kind of object, the following resources may be
/// helpful:
///
/// - [Javascript](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises)
/// - [Scala](http://docs.scala-lang.org/overviews/core/futures.html)
/// - [Python](https://docs.google.com/document/d/10WOZgLQaYNpOrag-eTbUm-JUCCfdyfravZ4qSOQPg1M/edit)
///
/// If you receive a `EventLoopFuture<Value>` from another function, you have a number of options:
/// The most common operation is to use `flatMap()` or `map()` to add a function that will be called
/// with the eventual result. Both methods returns a new `EventLoopFuture<Value>` immediately
/// that will receive the return value from your function, but they behave differently. If you have
/// a function that can return synchronously, the `map` function will transform the result of type
/// `Value` to a the new result of type `NewValue` and return an `EventLoopFuture<NewValue>`.
///
/// ```
/// let networkData = getNetworkData(args)
///
/// // When network data is received, convert it.
/// let processedResult: EventLoopFuture<Processed> = networkData.map { (n: NetworkResponse) -> Processed in
/// ... parse network data ....
/// return processedResult
/// }
/// ```
///
/// If however you need to do more asynchronous processing, you can call `flatMap()`. The return value of the
/// function passed to `flatMap` must be a new `EventLoopFuture<NewValue>` object: the return value of `flatMap()` is
/// a new `EventLoopFuture<NewValue>` that will contain the eventual result of both the original operation and
/// the subsequent one.
///
/// ```
/// // When converted network data is available, begin the database operation.
/// let databaseResult: EventLoopFuture<DBResult> = processedResult.flatMap { (p: Processed) -> EventLoopFuture<DBResult> in
/// return someDatabaseOperation(p)
/// }
/// ```
///
/// In essence, future chains created via `flatMap()` provide a form of data-driven asynchronous programming
/// that allows you to dynamically declare data dependencies for your various operations.
///
/// `EventLoopFuture` chains created via `flatMap()` are sufficient for most purposes. All of the registered
/// functions will eventually run in order. If one of those functions throws an error, that error will
/// bypass the remaining functions. You can use `flatMapError()` to handle and optionally recover from
/// errors in the middle of a chain.
///
/// At the end of an `EventLoopFuture` chain, you can use `whenSuccess()` or `whenFailure()` to add an
/// observer callback that will be invoked with the result or error at that point. (Note: If you ever
/// find yourself invoking `promise.succeed()` from inside a `whenSuccess()` callback, you probably should
/// use `flatMap()` or `cascade(to:)` instead.)
///
/// `EventLoopFuture` objects are typically obtained by:
/// * Using `.flatMap()` on an existing future to create a new future for the next step in a series of operations.
/// * Initializing an `EventLoopFuture` that already has a value or an error
///
/// ### Threading and Futures
///
/// One of the major performance advantages of NIO over something like Node.js or Pythons asyncio is that NIO will
/// by default run multiple event loops at once, on different threads. As most network protocols do not require
/// blocking operation, at least in their low level implementations, this provides enormous speedups on machines
/// with many cores such as most modern servers.
///
/// However, it can present a challenge at higher levels of abstraction when coordination between those threads
/// becomes necessary. This is usually the case whenever the events on one connection (that is, one `Channel`) depend
/// on events on another one. As these `Channel`s may be scheduled on different event loops (and so different threads)
/// care needs to be taken to ensure that communication between the two loops is done in a thread-safe manner that
/// avoids concurrent mutation of shared state from multiple loops at once.
///
/// The main primitives NIO provides for this use are the `EventLoopPromise` and `EventLoopFuture`. As their names
/// suggest, these two objects are aware of event loops, and so can help manage the safety and correctness of your
/// programs. However, understanding the exact semantics of these objects is critical to ensuring the safety of your code.
///
/// #### Callbacks
///
/// The most important principle of the `EventLoopPromise` and `EventLoopFuture` is this: all callbacks registered on
/// an `EventLoopFuture` will execute on the thread corresponding to the event loop that created the `Future`,
/// *regardless* of what thread succeeds or fails the corresponding `EventLoopPromise`.
///
/// This means that if *your code* created the `EventLoopPromise`, you can be extremely confident of what thread the
/// callback will execute on: after all, you held the event loop in hand when you created the `EventLoopPromise`.
/// However, if your code is handed an `EventLoopFuture` or `EventLoopPromise`, and you want to register callbacks
/// on those objects, you cannot be confident that those callbacks will execute on the same `EventLoop` that your
/// code does.
///
/// This presents a problem: how do you ensure thread-safety when registering callbacks on an arbitrary
/// `EventLoopFuture`? The short answer is that when you are holding an `EventLoopFuture`, you can always obtain a
/// new `EventLoopFuture` whose callbacks will execute on your event loop. You do this by calling
/// `EventLoopFuture.hop(to:)`. This function returns a new `EventLoopFuture` whose callbacks are guaranteed
/// to fire on the provided event loop. As an added bonus, `hopTo` will check whether the provided `EventLoopFuture`
/// was already scheduled to dispatch on the event loop in question, and avoid doing any work if that was the case.
///
/// This means that for any `EventLoopFuture` that your code did not create itself (via
/// `EventLoopPromise.futureResult`), use of `hopTo` is **strongly encouraged** to help guarantee thread-safety. It
/// should only be elided when thread-safety is provably not needed.
///
/// The "thread affinity" of `EventLoopFuture`s is critical to writing safe, performant concurrent code without
/// boilerplate. It allows you to avoid needing to write or use locks in your own code, instead using the natural
/// synchronization of the `EventLoop` to manage your thread-safety. In general, if any of your `ChannelHandler`s
/// or `EventLoopFuture` callbacks need to invoke a lock (either directly or in the form of `DispatchQueue`) this
/// should be considered a code smell worth investigating: the `EventLoop`-based synchronization guarantees of
/// `EventLoopFuture` should be sufficient to guarantee thread-safety.
public final class EventLoopFuture<Value> {
// TODO: Provide a tracing facility. It would be nice to be able to set '.debugTrace = true' on any EventLoopFuture or EventLoopPromise and have every subsequent chained EventLoopFuture report the success result or failure error. That would simplify some debugging scenarios.
@usableFromInline
internal var _value: Optional<Result<Value, Error>>
/// The `EventLoop` which is tied to the `EventLoopFuture` and is used to notify all registered callbacks.
public let eventLoop: EventLoop
/// Callbacks that should be run when this `EventLoopFuture<Value>` gets a value.
/// These callbacks may give values to other `EventLoopFuture`s; if that happens,
/// they return any callbacks from those `EventLoopFuture`s so that we can run
/// the entire chain from the top without recursing.
@usableFromInline
internal var _callbacks: CallbackList
@inlinable
internal init(_eventLoop eventLoop: EventLoop, file: StaticString, line: UInt) {
self.eventLoop = eventLoop
self._value = nil
self._callbacks = .init()
debugOnly {
eventLoop._promiseCreated(futureIdentifier: _NIOEventLoopFutureIdentifier(self), file: file, line: line)
}
}
/// A EventLoopFuture<Value> that has already succeeded
@inlinable
internal init(eventLoop: EventLoop, value: Value) {
self.eventLoop = eventLoop
self._value = .success(value)
self._callbacks = .init()
}
/// A EventLoopFuture<Value> that has already failed
@inlinable
internal init(eventLoop: EventLoop, error: Error) {
self.eventLoop = eventLoop
self._value = .failure(error)
self._callbacks = .init()
}
deinit {
debugOnly {
if let creation = eventLoop._promiseCompleted(futureIdentifier: _NIOEventLoopFutureIdentifier(self)) {
if self._value == nil {
fatalError("leaking promise created at \(creation)", file: creation.file, line: creation.line)
}
} else {
precondition(self._value != nil, "leaking an unfulfilled Promise")
}
}
}
}
extension EventLoopFuture: Equatable {
public static func ==(lhs: EventLoopFuture, rhs: EventLoopFuture) -> Bool {
return lhs === rhs
}
}
// MARK: flatMap and map
// 'flatMap' and 'map' implementations. This is really the key of the entire system.
extension EventLoopFuture {
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback,
/// which will provide a new `EventLoopFuture`.
///
/// This allows you to dynamically dispatch new asynchronous tasks as phases in a
/// longer series of processing steps. Note that you can use the results of the
/// current `EventLoopFuture<Value>` when determining how to dispatch the next operation.
///
/// This works well when you have APIs that already know how to return `EventLoopFuture`s.
/// You can do something with the result of one and just return the next future:
///
/// ```
/// let d1 = networkRequest(args).future()
/// let d2 = d1.flatMap { t -> EventLoopFuture<NewValue> in
/// . . . something with t . . .
/// return netWorkRequest(args)
/// }
/// d2.whenSuccess { u in
/// NSLog("Result of second request: \(u)")
/// }
/// ```
///
/// Note: In a sense, the `EventLoopFuture<NewValue>` is returned before it's created.
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
@preconcurrency
public func flatMap<NewValue>(_ callback: @escaping @Sendable (Value) -> EventLoopFuture<NewValue>) -> EventLoopFuture<NewValue> {
self._flatMap(callback)
}
@usableFromInline typealias FlatMapCallback<NewValue> = @Sendable (Value) -> EventLoopFuture<NewValue>
#else
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback,
/// which will provide a new `EventLoopFuture`.
///
/// This allows you to dynamically dispatch new asynchronous tasks as phases in a
/// longer series of processing steps. Note that you can use the results of the
/// current `EventLoopFuture<Value>` when determining how to dispatch the next operation.
///
/// This works well when you have APIs that already know how to return `EventLoopFuture`s.
/// You can do something with the result of one and just return the next future:
///
/// ```
/// let d1 = networkRequest(args).future()
/// let d2 = d1.flatMap { t -> EventLoopFuture<NewValue> in
/// . . . something with t . . .
/// return netWorkRequest(args)
/// }
/// d2.whenSuccess { u in
/// NSLog("Result of second request: \(u)")
/// }
/// ```
///
/// Note: In a sense, the `EventLoopFuture<NewValue>` is returned before it's created.
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
public func flatMap<NewValue>(_ callback: @escaping (Value) -> EventLoopFuture<NewValue>) -> EventLoopFuture<NewValue> {
self._flatMap(callback)
}
@usableFromInline typealias FlatMapCallback<NewValue> = (Value) -> EventLoopFuture<NewValue>
#endif
@inlinable
func _flatMap<NewValue>(_ callback: @escaping FlatMapCallback<NewValue>) -> EventLoopFuture<NewValue> {
let next = EventLoopPromise<NewValue>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let t):
let futureU = callback(t)
if futureU.eventLoop.inEventLoop {
return futureU._addCallback {
next._setValue(value: futureU._value!)
}
} else {
futureU.cascade(to: next)
return CallbackList()
}
case .failure(let error):
return next._setValue(value: .failure(error))
}
}
return next.futureResult
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns a new value of type `NewValue`. The provided
/// callback may optionally `throw`.
///
/// Operations performed in `flatMapThrowing` should not block, or they will block the entire
/// event loop. `flatMapThrowing` is intended for use when you have a data-driven function that
/// performs a simple data transformation that can potentially error.
///
/// If your callback function throws, the returned `EventLoopFuture` will error.
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
@preconcurrency
public func flatMapThrowing<NewValue>(_ callback: @escaping @Sendable (Value) throws -> NewValue) -> EventLoopFuture<NewValue> {
self._flatMapThrowing(callback)
}
@usableFromInline typealias FlatMapThrowingCallback<NewValue> = @Sendable (Value) throws -> NewValue
#else
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns a new value of type `NewValue`. The provided
/// callback may optionally `throw`.
///
/// Operations performed in `flatMapThrowing` should not block, or they will block the entire
/// event loop. `flatMapThrowing` is intended for use when you have a data-driven function that
/// performs a simple data transformation that can potentially error.
///
/// If your callback function throws, the returned `EventLoopFuture` will error.
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
public func flatMapThrowing<NewValue>(_ callback: @escaping (Value) throws -> NewValue) -> EventLoopFuture<NewValue> {
self._flatMapThrowing(callback)
}
@usableFromInline typealias FlatMapThrowingCallback<NewValue> = (Value) throws -> NewValue
#endif
@inlinable
func _flatMapThrowing<NewValue>(_ callback: @escaping FlatMapThrowingCallback<NewValue>) -> EventLoopFuture<NewValue> {
let next = EventLoopPromise<NewValue>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let t):
do {
let r = try callback(t)
return next._setValue(value: .success(r))
} catch {
return next._setValue(value: .failure(error))
}
case .failure(let e):
return next._setValue(value: .failure(e))
}
}
return next.futureResult
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// may recover from the error and returns a new value of type `Value`. The provided callback may optionally `throw`,
/// in which case the `EventLoopFuture` will be in a failed state with the new thrown error.
///
/// Operations performed in `flatMapErrorThrowing` should not block, or they will block the entire
/// event loop. `flatMapErrorThrowing` is intended for use when you have the ability to synchronously
/// recover from errors.
///
/// If your callback function throws, the returned `EventLoopFuture` will error.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value or a rethrown error.
@inlinable
@preconcurrency
public func flatMapErrorThrowing(_ callback: @escaping @Sendable (Error) throws -> Value) -> EventLoopFuture<Value> {
self._flatMapErrorThrowing(callback)
}
@usableFromInline typealias FlatMapErrorThrowingCallback = @Sendable (Error) throws -> Value
#else
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// may recover from the error and returns a new value of type `Value`. The provided callback may optionally `throw`,
/// in which case the `EventLoopFuture` will be in a failed state with the new thrown error.
///
/// Operations performed in `flatMapErrorThrowing` should not block, or they will block the entire
/// event loop. `flatMapErrorThrowing` is intended for use when you have the ability to synchronously
/// recover from errors.
///
/// If your callback function throws, the returned `EventLoopFuture` will error.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value or a rethrown error.
@inlinable
public func flatMapErrorThrowing(_ callback: @escaping (Error) throws -> Value) -> EventLoopFuture<Value> {
self._flatMapErrorThrowing(callback)
}
@usableFromInline typealias FlatMapErrorThrowingCallback = (Error) throws -> Value
#endif
@inlinable
func _flatMapErrorThrowing(_ callback: @escaping FlatMapErrorThrowingCallback) -> EventLoopFuture<Value> {
let next = EventLoopPromise<Value>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let t):
return next._setValue(value: .success(t))
case .failure(let e):
do {
let r = try callback(e)
return next._setValue(value: .success(r))
} catch {
return next._setValue(value: .failure(error))
}
}
}
return next.futureResult
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns a new value of type `NewValue`.
///
/// Operations performed in `map` should not block, or they will block the entire event
/// loop. `map` is intended for use when you have a data-driven function that performs
/// a simple data transformation that cannot error.
///
/// If you have a data-driven function that can throw, you should use `flatMapThrowing`
/// instead.
///
/// ```
/// let future1 = eventually()
/// let future2 = future1.map { T -> U in
/// ... stuff ...
/// return u
/// }
/// let future3 = future2.map { U -> V in
/// ... stuff ...
/// return v
/// }
/// ```
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
@preconcurrency
public func map<NewValue>(_ callback: @escaping @Sendable (Value) -> (NewValue)) -> EventLoopFuture<NewValue> {
self._map(callback)
}
@usableFromInline typealias MapCallback<NewValue> = @Sendable (Value) -> (NewValue)
#else
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns a new value of type `NewValue`.
///
/// Operations performed in `map` should not block, or they will block the entire event
/// loop. `map` is intended for use when you have a data-driven function that performs
/// a simple data transformation that cannot error.
///
/// If you have a data-driven function that can throw, you should use `flatMapThrowing`
/// instead.
///
/// ```
/// let future1 = eventually()
/// let future2 = future1.map { T -> U in
/// ... stuff ...
/// return u
/// }
/// let future3 = future2.map { U -> V in
/// ... stuff ...
/// return v
/// }
/// ```
///
/// - parameters:
/// - callback: Function that will receive the value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
public func map<NewValue>(_ callback: @escaping (Value) -> (NewValue)) -> EventLoopFuture<NewValue> {
self._map(callback)
}
@usableFromInline typealias MapCallback<NewValue> = (Value) -> (NewValue)
#endif
@inlinable
func _map<NewValue>(_ callback: @escaping MapCallback<NewValue>) -> EventLoopFuture<NewValue> {
if NewValue.self == Value.self && NewValue.self == Void.self {
#if swift(>=5.7)
self.whenSuccess(callback as! @Sendable (Value) -> Void)
#else
self.whenSuccess(callback as! (Value) -> Void)
#endif
return self as! EventLoopFuture<NewValue>
} else {
let next = EventLoopPromise<NewValue>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
return next._setValue(value: self._value!.map(callback))
}
return next.futureResult
}
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// may recover from the error by returning an `EventLoopFuture<NewValue>`. The callback is intended to potentially
/// recover from the error by returning a new `EventLoopFuture` that will eventually contain the recovered
/// result.
///
/// If the callback cannot recover it should return a failed `EventLoopFuture`.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the recovered value.
@inlinable
@preconcurrency
public func flatMapError(_ callback: @escaping @Sendable (Error) -> EventLoopFuture<Value>) -> EventLoopFuture<Value> {
self._flatMapError(callback)
}
@usableFromInline typealias FlatMapErrorCallback = @Sendable (Error) -> EventLoopFuture<Value>
#else
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// may recover from the error by returning an `EventLoopFuture<NewValue>`. The callback is intended to potentially
/// recover from the error by returning a new `EventLoopFuture` that will eventually contain the recovered
/// result.
///
/// If the callback cannot recover it should return a failed `EventLoopFuture`.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the recovered value.
@inlinable
public func flatMapError(_ callback: @escaping (Error) -> EventLoopFuture<Value>) -> EventLoopFuture<Value> {
self._flatMapError(callback)
}
@usableFromInline typealias FlatMapErrorCallback = (Error) -> EventLoopFuture<Value>
#endif
@inlinable
func _flatMapError(_ callback: @escaping FlatMapErrorCallback) -> EventLoopFuture<Value> {
let next = EventLoopPromise<Value>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let t):
return next._setValue(value: .success(t))
case .failure(let e):
let t = callback(e)
if t.eventLoop.inEventLoop {
return t._addCallback {
next._setValue(value: t._value!)
}
} else {
t.cascade(to: next)
return CallbackList()
}
}
}
return next.futureResult
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns either a new value (of type `NewValue`) or
/// an error depending on the `Result` returned by the closure.
///
/// Operations performed in `flatMapResult` should not block, or they will block the entire
/// event loop. `flatMapResult` is intended for use when you have a data-driven function that
/// performs a simple data transformation that can potentially error.
///
///
/// - parameters:
/// - body: Function that will receive the value of this `EventLoopFuture` and return
/// a new value or error lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
@preconcurrency
public func flatMapResult<NewValue, SomeError: Error>(_ body: @escaping @Sendable (Value) -> Result<NewValue, SomeError>) -> EventLoopFuture<NewValue> {
self._flatMapResult(body)
}
@usableFromInline typealias FlatMapResultCallback<NewValue, SomeError: Error> = @Sendable (Value) -> Result<NewValue, SomeError>
#else
/// When the current `EventLoopFuture<Value>` is fulfilled, run the provided callback, which
/// performs a synchronous computation and returns either a new value (of type `NewValue`) or
/// an error depending on the `Result` returned by the closure.
///
/// Operations performed in `flatMapResult` should not block, or they will block the entire
/// event loop. `flatMapResult` is intended for use when you have a data-driven function that
/// performs a simple data transformation that can potentially error.
///
///
/// - parameters:
/// - body: Function that will receive the value of this `EventLoopFuture` and return
/// a new value or error lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the eventual value.
@inlinable
public func flatMapResult<NewValue, SomeError: Error>(_ body: @escaping (Value) -> Result<NewValue, SomeError>) -> EventLoopFuture<NewValue> {
self._flatMapResult(body)
}
@usableFromInline typealias FlatMapResultCallback<NewValue, SomeError: Error> = (Value) -> Result<NewValue, SomeError>
#endif
@inlinable
func _flatMapResult<NewValue, SomeError: Error>(_ body: @escaping FlatMapResultCallback<NewValue, SomeError>) -> EventLoopFuture<NewValue> {
let next = EventLoopPromise<NewValue>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let value):
switch body(value) {
case .success(let newValue):
return next._setValue(value: .success(newValue))
case .failure(let error):
return next._setValue(value: .failure(error))
}
case .failure(let e):
return next._setValue(value: .failure(e))
}
}
return next.futureResult
}
#if swift(>=5.7)
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// can recover from the error and return a new value of type `Value`. The provided callback may not `throw`,
/// so this function should be used when the error is always recoverable.
///
/// Operations performed in `recover` should not block, or they will block the entire
/// event loop. `recover` is intended for use when you have the ability to synchronously
/// recover from errors.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the recovered value.
@inlinable
@preconcurrency
public func recover(_ callback: @escaping @Sendable (Error) -> Value) -> EventLoopFuture<Value> {
self._recover(callback)
}
@usableFromInline typealias RecoverCallback = @Sendable (Error) -> Value
#else
/// When the current `EventLoopFuture<Value>` is in an error state, run the provided callback, which
/// can recover from the error and return a new value of type `Value`. The provided callback may not `throw`,
/// so this function should be used when the error is always recoverable.
///
/// Operations performed in `recover` should not block, or they will block the entire
/// event loop. `recover` is intended for use when you have the ability to synchronously
/// recover from errors.
///
/// - parameters:
/// - callback: Function that will receive the error value of this `EventLoopFuture` and return
/// a new value lifted into a new `EventLoopFuture`.
/// - returns: A future that will receive the recovered value.
@inlinable
public func recover(_ callback: @escaping (Error) -> Value) -> EventLoopFuture<Value> {
self._recover(callback)
}
@usableFromInline typealias RecoverCallback = (Error) -> Value
#endif
@inlinable
func _recover(_ callback: @escaping RecoverCallback) -> EventLoopFuture<Value> {
let next = EventLoopPromise<Value>.makeUnleakablePromise(eventLoop: self.eventLoop)
self._whenComplete {
switch self._value! {
case .success(let t):
return next._setValue(value: .success(t))
case .failure(let e):
return next._setValue(value: .success(callback(e)))
}
}
return next.futureResult
}
#if swift(>=5.7)
@usableFromInline typealias AddCallbackCallback = @Sendable () -> CallbackList
#else
@usableFromInline typealias AddCallbackCallback = () -> CallbackList
#endif
/// Add a callback. If there's already a value, invoke it and return the resulting list of new callback functions.
@inlinable
internal func _addCallback(_ callback: @escaping AddCallbackCallback) -> CallbackList {
self.eventLoop.assertInEventLoop()
if self._value == nil {
self._callbacks.append(callback)
return CallbackList()
}
return callback()
}
#if swift(>=5.7)
/// Add a callback. If there's already a value, run as much of the chain as we can.
@inlinable
@preconcurrency // TODO: We want to remove @preconcurrency but it results in more allocations in 1000_udpconnections
internal func _whenComplete(_ callback: @escaping @Sendable () -> CallbackList) {
self._internalWhenComplete(callback)
}
@usableFromInline typealias InternalWhenCompleteCallback = @Sendable () -> CallbackList
#else
/// Add a callback. If there's already a value, run as much of the chain as we can.
@inlinable
internal func _whenComplete(_ callback: @escaping () -> CallbackList) {
self._internalWhenComplete(callback)
}
@usableFromInline typealias InternalWhenCompleteCallback = () -> CallbackList
#endif
/// Add a callback. If there's already a value, run as much of the chain as we can.
@inlinable
internal func _internalWhenComplete(_ callback: @escaping InternalWhenCompleteCallback) {
if self.eventLoop.inEventLoop {
self._addCallback(callback)._run()
} else {
self.eventLoop.execute {
self._addCallback(callback)._run()
}
}
}
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a success result.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - callback: The callback that is called with the successful result of the `EventLoopFuture`.
@inlinable
@preconcurrency
public func whenSuccess(_ callback: @escaping @Sendable (Value) -> Void) {
self._whenSuccess(callback)
}
@usableFromInline typealias WhenSuccessCallback = @Sendable (Value) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a success result.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - callback: The callback that is called with the successful result of the `EventLoopFuture`.
@inlinable
public func whenSuccess(_ callback: @escaping (Value) -> Void) {
self._whenSuccess(callback)
}
@usableFromInline typealias WhenSuccessCallback = (Value) -> Void
#endif
@inlinable
func _whenSuccess(_ callback: @escaping WhenSuccessCallback) {
self._whenComplete {
if case .success(let t) = self._value! {
callback(t)
}
return CallbackList()
}
}
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a failure result.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - callback: The callback that is called with the failed result of the `EventLoopFuture`.
@inlinable
@preconcurrency
public func whenFailure(_ callback: @escaping @Sendable (Error) -> Void) {
self._whenFailure(callback)
}
@usableFromInline typealias WhenFailureCallback = @Sendable (Error) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a failure result.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - callback: The callback that is called with the failed result of the `EventLoopFuture`.
@inlinable
public func whenFailure(_ callback: @escaping (Error) -> Void) {
self._whenFailure(callback)
}
@usableFromInline typealias WhenFailureCallback = (Error) -> Void
#endif
@inlinable
func _whenFailure(_ callback: @escaping WhenFailureCallback) {
self._whenComplete {
if case .failure(let e) = self._value! {
callback(e)
}
return CallbackList()
}
}
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result.
///
/// - parameters:
/// - callback: The callback that is called when the `EventLoopFuture` is fulfilled.
@inlinable
@preconcurrency
public func whenComplete(_ callback: @escaping @Sendable (Result<Value, Error>) -> Void) {
self._publicWhenComplete(callback)
}
@usableFromInline typealias WhenCompleteCallback = @Sendable (Result<Value, Error>) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result.
///
/// - parameters:
/// - callback: The callback that is called when the `EventLoopFuture` is fulfilled.
@inlinable
public func whenComplete(_ callback: @escaping (Result<Value, Error>) -> Void) {
self._publicWhenComplete(callback)
}
@usableFromInline typealias WhenCompleteCallback = (Result<Value, Error>) -> Void
#endif
@inlinable
func _publicWhenComplete(_ callback: @escaping WhenCompleteCallback) {
self._whenComplete {
callback(self._value!)
return CallbackList()
}
}
/// Internal: Set the value and return a list of callbacks that should be invoked as a result.
@inlinable
internal func _setValue(value: Result<Value, Error>) -> CallbackList {
self.eventLoop.assertInEventLoop()
if self._value == nil {
self._value = value
let callbacks = self._callbacks
self._callbacks = CallbackList()
return callbacks
}
return CallbackList()
}
}
// MARK: and
extension EventLoopFuture {
/// Return a new `EventLoopFuture` that succeeds when this "and" another
/// provided `EventLoopFuture` both succeed. It then provides the pair
/// of results. If either one fails, the combined `EventLoopFuture` will fail with
/// the first error encountered.
@inlinable
public func and<OtherValue>(_ other: EventLoopFuture<OtherValue>) -> EventLoopFuture<(Value, OtherValue)> {
let promise = EventLoopPromise<(Value, OtherValue)>.makeUnleakablePromise(eventLoop: self.eventLoop)
let box: UnsafeMutableTransferBox<(t:Value?, u: OtherValue?)> = .init((nil, nil))
assert(self.eventLoop === promise.futureResult.eventLoop)
self._whenComplete { () -> CallbackList in
switch self._value! {
case .failure(let error):
return promise._setValue(value: .failure(error))
case .success(let t):
if let u = box.wrappedValue.u {
return promise._setValue(value: .success((t, u)))
} else {
box.wrappedValue.t = t
}
}
return CallbackList()
}
let hopOver = other.hop(to: self.eventLoop)
hopOver._whenComplete { () -> CallbackList in
self.eventLoop.assertInEventLoop()
switch other._value! {
case .failure(let error):
return promise._setValue(value: .failure(error))
case .success(let u):
if let t = box.wrappedValue.t {
return promise._setValue(value: .success((t, u)))
} else {
box.wrappedValue.u = u
}
}
return CallbackList()
}
return promise.futureResult
}
/// Return a new EventLoopFuture that contains this "and" another value.
/// This is just syntactic sugar for `future.and(loop.makeSucceedFuture(value))`.
@inlinable
public func and<OtherValue>(value: OtherValue) -> EventLoopFuture<(Value, OtherValue)> {
return self.and(EventLoopFuture<OtherValue>(eventLoop: self.eventLoop, value: value))
}
}
// MARK: cascade
extension EventLoopFuture {
/// Fulfills the given `EventLoopPromise` with the results from this `EventLoopFuture`.
///
/// This is useful when allowing users to provide promises for you to fulfill, but
/// when you are calling functions that return their own promises. They allow you to
/// tidy up your computational pipelines.
///
/// For example:
/// ```
/// doWork().flatMap {
/// doMoreWork($0)
/// }.flatMap {
/// doYetMoreWork($0)
/// }.flatMapError {
/// maybeRecoverFromError($0)
/// }.map {
/// transformData($0)
/// }.cascade(to: userPromise)
/// ```
///
/// - Parameter to: The `EventLoopPromise` to fulfill with the results of this future.
/// - SeeAlso: `EventLoopPromise.completeWith(_:)`
@inlinable
public func cascade(to promise: EventLoopPromise<Value>?) {
guard let promise = promise else { return }
self.whenComplete { result in
switch result {
case let .success(value): promise.succeed(value)
case let .failure(error): promise.fail(error)
}
}
}
/// Fulfills the given `EventLoopPromise` only when this `EventLoopFuture` succeeds.
///
/// If you are doing work that fulfills a type that doesn't match the expected `EventLoopPromise` value, add an
/// intermediate `map`.
///
/// For example:
/// ```
/// let boolPromise = eventLoop.makePromise(of: Bool.self)
/// doWorkReturningInt().map({ $0 >= 0 }).cascade(to: boolPromise)
/// ```
///
/// - Parameter to: The `EventLoopPromise` to fulfill when a successful result is available.
@inlinable
public func cascadeSuccess(to promise: EventLoopPromise<Value>?) {
guard let promise = promise else { return }
self.whenSuccess { promise.succeed($0) }
}
/// Fails the given `EventLoopPromise` with the error from this `EventLoopFuture` if encountered.
///
/// This is an alternative variant of `cascade` that allows you to potentially return early failures in
/// error cases, while passing the user `EventLoopPromise` onwards.
///
/// - Parameter to: The `EventLoopPromise` that should fail with the error of this `EventLoopFuture`.
@inlinable
public func cascadeFailure<NewValue>(to promise: EventLoopPromise<NewValue>?) {
guard let promise = promise else { return }
self.whenFailure { promise.fail($0) }
}
}
// MARK: wait
extension EventLoopFuture {
#if swift(>=5.7)
/// Wait for the resolution of this `EventLoopFuture` by blocking the current thread until it
/// resolves.
///
/// If the `EventLoopFuture` resolves with a value, that value is returned from `wait()`. If
/// the `EventLoopFuture` resolves with an error, that error will be thrown instead.
/// `wait()` will block whatever thread it is called on, so it must not be called on event loop
/// threads: it is primarily useful for testing, or for building interfaces between blocking
/// and non-blocking code.
///
/// This is also forbidden in async contexts: prefer ``EventLoopFuture/get()``.
///
/// - returns: The value of the `EventLoopFuture` when it completes.
/// - throws: The error value of the `EventLoopFuture` if it errors.
@available(*, noasync, message: "wait() can block indefinitely, prefer get()", renamed: "get()")
@inlinable
public func wait(file: StaticString = #file, line: UInt = #line) throws -> Value {
return try self._wait(file: file, line: line)
}
#else
/// Wait for the resolution of this `EventLoopFuture` by blocking the current thread until it
/// resolves.
///
/// If the `EventLoopFuture` resolves with a value, that value is returned from `wait()`. If
/// the `EventLoopFuture` resolves with an error, that error will be thrown instead.
/// `wait()` will block whatever thread it is called on, so it must not be called on event loop
/// threads: it is primarily useful for testing, or for building interfaces between blocking
/// and non-blocking code.
///
/// This is also forbidden in async contexts: prefer ``EventLoopFuture/get``.
///
/// - returns: The value of the `EventLoopFuture` when it completes.
/// - throws: The error value of the `EventLoopFuture` if it errors.
@inlinable
public func wait(file: StaticString = #file, line: UInt = #line) throws -> Value {
return try self._wait(file: file, line: line)
}
#endif
@inlinable
func _wait(file: StaticString, line: UInt) throws -> Value {
self.eventLoop._preconditionSafeToWait(file: file, line: line)
let v: UnsafeMutableTransferBox<Result<Value, Error>?> = .init(nil)
let lock = ConditionLock(value: 0)
self._whenComplete { () -> CallbackList in
lock.lock()
v.wrappedValue = self._value
lock.unlock(withValue: 1)
return CallbackList()
}
lock.lock(whenValue: 1)
lock.unlock()
switch(v.wrappedValue!) {
case .success(let result):
return result
case .failure(let error):
throw error
}
}
}
// MARK: fold
extension EventLoopFuture {
#if swift(>=5.7)
/// Returns a new `EventLoopFuture` that fires only when this `EventLoopFuture` and
/// all the provided `futures` complete. It then provides the result of folding the value of this
/// `EventLoopFuture` with the values of all the provided `futures`.
///
/// This function is suited when you have APIs that already know how to return `EventLoopFuture`s.
///
/// The returned `EventLoopFuture` will fail as soon as the a failure is encountered in any of the
/// `futures` (or in this one). However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall EventLoopFuture.
///
/// - parameters:
/// - futures: An array of `EventLoopFuture<NewValue>` to wait for.
/// - with: A function that will be used to fold the values of two `EventLoopFuture`s and return a new value wrapped in an `EventLoopFuture`.
/// - returns: A new `EventLoopFuture` with the folded value whose callbacks run on `self.eventLoop`.
@inlinable
@preconcurrency
public func fold<OtherValue>(
_ futures: [EventLoopFuture<OtherValue>],
with combiningFunction: @escaping @Sendable (Value, OtherValue) -> EventLoopFuture<Value>
) -> EventLoopFuture<Value> {
self._fold(futures, with: combiningFunction)
}
@usableFromInline typealias FoldCallback<OtherValue> = @Sendable (Value, OtherValue) -> EventLoopFuture<Value>
#else
/// Returns a new `EventLoopFuture` that fires only when this `EventLoopFuture` and
/// all the provided `futures` complete. It then provides the result of folding the value of this
/// `EventLoopFuture` with the values of all the provided `futures`.
///
/// This function is suited when you have APIs that already know how to return `EventLoopFuture`s.
///
/// The returned `EventLoopFuture` will fail as soon as the a failure is encountered in any of the
/// `futures` (or in this one). However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall EventLoopFuture.
///
/// - parameters:
/// - futures: An array of `EventLoopFuture<NewValue>` to wait for.
/// - with: A function that will be used to fold the values of two `EventLoopFuture`s and return a new value wrapped in an `EventLoopFuture`.
/// - returns: A new `EventLoopFuture` with the folded value whose callbacks run on `self.eventLoop`.
@inlinable
public func fold<OtherValue>(
_ futures: [EventLoopFuture<OtherValue>],
with combiningFunction: @escaping (Value, OtherValue) -> EventLoopFuture<Value>
) -> EventLoopFuture<Value> {
self._fold(futures, with: combiningFunction)
}
@usableFromInline typealias FoldCallback<OtherValue> = (Value, OtherValue) -> EventLoopFuture<Value>
#endif
@inlinable
func _fold<OtherValue>(
_ futures: [EventLoopFuture<OtherValue>],
with combiningFunction: @escaping FoldCallback<OtherValue>
) -> EventLoopFuture<Value> {
func fold0() -> EventLoopFuture<Value> {
let body = futures.reduce(self) { (f1: EventLoopFuture<Value>, f2: EventLoopFuture<OtherValue>) -> EventLoopFuture<Value> in
let newFuture = f1.and(f2).flatMap { (args: (Value, OtherValue)) -> EventLoopFuture<Value> in
let (f1Value, f2Value) = args
self.eventLoop.assertInEventLoop()
return combiningFunction(f1Value, f2Value)
}
assert(newFuture.eventLoop === self.eventLoop)
return newFuture
}
return body
}
if self.eventLoop.inEventLoop {
return fold0()
} else {
let promise = self.eventLoop.makePromise(of: Value.self)
self.eventLoop.execute {
fold0().cascade(to: promise)
}
return promise.futureResult
}
}
}
// MARK: reduce
extension EventLoopFuture {
#if swift(>=5.7)
/// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
/// The new `EventLoopFuture` contains the result of reducing the `initialResult` with the
/// values of the `[EventLoopFuture<NewValue>]`.
///
/// This function makes copies of the result for each EventLoopFuture, for a version which avoids
/// making copies, check out `reduce<NewValue>(into:)`.
///
/// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
/// `futures`. However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
///
/// - parameters:
/// - initialResult: An initial result to begin the reduction.
/// - futures: An array of `EventLoopFuture` to wait for.
/// - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - nextPartialResult: The bifunction used to produce partial results.
/// - returns: A new `EventLoopFuture` with the reduced value.
@preconcurrency
@inlinable
public static func reduce<InputValue>(
_ initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ nextPartialResult: @escaping @Sendable (Value, InputValue) -> Value
) -> EventLoopFuture<Value> {
Self._reduce(initialResult, futures, on: eventLoop, nextPartialResult)
}
@usableFromInline typealias ReduceCallback<InputValue> = @Sendable (Value, InputValue) -> Value
#else
/// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
/// The new `EventLoopFuture` contains the result of reducing the `initialResult` with the
/// values of the `[EventLoopFuture<NewValue>]`.
///
/// This function makes copies of the result for each EventLoopFuture, for a version which avoids
/// making copies, check out `reduce<NewValue>(into:)`.
///
/// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
/// `futures`. However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
///
/// - parameters:
/// - initialResult: An initial result to begin the reduction.
/// - futures: An array of `EventLoopFuture` to wait for.
/// - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - nextPartialResult: The bifunction used to produce partial results.
/// - returns: A new `EventLoopFuture` with the reduced value.
@inlinable
public static func reduce<InputValue>(
_ initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ nextPartialResult: @escaping (Value, InputValue) -> Value
) -> EventLoopFuture<Value> {
Self._reduce(initialResult, futures, on: eventLoop, nextPartialResult)
}
@usableFromInline typealias ReduceCallback<InputValue> = (Value, InputValue) -> Value
#endif
@inlinable
static func _reduce<InputValue>(
_ initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ nextPartialResult: @escaping ReduceCallback<InputValue>
) -> EventLoopFuture<Value> {
let f0 = eventLoop.makeSucceededFuture(initialResult)
let body = f0.fold(futures) { (t: Value, u: InputValue) -> EventLoopFuture<Value> in
eventLoop.makeSucceededFuture(nextPartialResult(t, u))
}
return body
}
#if swift(>=5.7)
/// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
/// The new `EventLoopFuture` contains the result of combining the `initialResult` with the
/// values of the `[EventLoopFuture<NewValue>]`. This function is analogous to the standard library's
/// `reduce(into:)`, which does not make copies of the result type for each `EventLoopFuture`.
///
/// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
/// `futures`. However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
///
/// - parameters:
/// - initialResult: An initial result to begin the reduction.
/// - futures: An array of `EventLoopFuture` to wait for.
/// - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - updateAccumulatingResult: The bifunction used to combine partialResults with new elements.
/// - returns: A new `EventLoopFuture` with the combined value.
@inlinable
@preconcurrency
public static func reduce<InputValue>(
into initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ updateAccumulatingResult: @escaping @Sendable (inout Value, InputValue) -> Void
) -> EventLoopFuture<Value> {
Self._reduce(into: initialResult, futures, on: eventLoop, updateAccumulatingResult)
}
@usableFromInline typealias ReduceIntoCallback<InputValue> = @Sendable (inout Value, InputValue) -> Void
#else
/// Returns a new `EventLoopFuture` that fires only when all the provided futures complete.
/// The new `EventLoopFuture` contains the result of combining the `initialResult` with the
/// values of the `[EventLoopFuture<NewValue>]`. This function is analogous to the standard library's
/// `reduce(into:)`, which does not make copies of the result type for each `EventLoopFuture`.
///
/// The returned `EventLoopFuture` will fail as soon as a failure is encountered in any of the
/// `futures`. However, the failure will not occur until all preceding
/// `EventLoopFutures` have completed. At the point the failure is encountered, all subsequent
/// `EventLoopFuture` objects will no longer be waited for. This function therefore fails fast: once
/// a failure is encountered, it will immediately fail the overall `EventLoopFuture`.
///
/// - parameters:
/// - initialResult: An initial result to begin the reduction.
/// - futures: An array of `EventLoopFuture` to wait for.
/// - eventLoop: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - updateAccumulatingResult: The bifunction used to combine partialResults with new elements.
/// - returns: A new `EventLoopFuture` with the combined value.
@inlinable
public static func reduce<InputValue>(
into initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ updateAccumulatingResult: @escaping (inout Value, InputValue) -> Void
) -> EventLoopFuture<Value> {
Self._reduce(into: initialResult, futures, on: eventLoop, updateAccumulatingResult)
}
@usableFromInline typealias ReduceIntoCallback<InputValue> = (inout Value, InputValue) -> Void
#endif
@inlinable
static func _reduce<InputValue>(
into initialResult: Value,
_ futures: [EventLoopFuture<InputValue>],
on eventLoop: EventLoop,
_ updateAccumulatingResult: @escaping ReduceIntoCallback<InputValue>
) -> EventLoopFuture<Value> {
let p0 = eventLoop.makePromise(of: Value.self)
var value: Value = initialResult
let f0 = eventLoop.makeSucceededFuture(())
let future = f0.fold(futures) { (_: (), newValue: InputValue) -> EventLoopFuture<Void> in
eventLoop.assertInEventLoop()
updateAccumulatingResult(&value, newValue)
return eventLoop.makeSucceededFuture(())
}
future.whenSuccess {
eventLoop.assertInEventLoop()
p0.succeed(value)
}
future.whenFailure { (error) in
eventLoop.assertInEventLoop()
p0.fail(error)
}
return p0.futureResult
}
}
// MARK: "fail fast" reduce
extension EventLoopFuture {
/// Returns a new `EventLoopFuture` that succeeds only if all of the provided futures succeed.
///
/// This method acts as a successful completion notifier - values fulfilled by each future are discarded.
///
/// The returned `EventLoopFuture` fails as soon as any of the provided futures fail.
///
/// If it is desired to always succeed, regardless of failures, use `andAllComplete` instead.
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFutures`s to wait for.
/// - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will execute on.
/// - Returns: A new `EventLoopFuture` that waits for the other futures to succeed.
@inlinable
public static func andAllSucceed(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<Void> {
let promise = eventLoop.makePromise(of: Void.self)
EventLoopFuture.andAllSucceed(futures, promise: promise)
return promise.futureResult
}
/// Succeeds the promise if all of the provided futures succeed. If any of the provided
/// futures fail then the `promise` will be failed -- even if some futures are yet to complete.
///
/// If the results of all futures should be collected use `andAllComplete` instead.
///
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFutures`s to wait for.
/// - promise: The `EventLoopPromise` to complete with the result of this call.
@inlinable
public static func andAllSucceed(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<Void>) {
let eventLoop = promise.futureResult.eventLoop
if eventLoop.inEventLoop {
self._reduceSuccesses0(promise, futures, eventLoop, onValue: { _, _ in })
} else {
eventLoop.execute {
self._reduceSuccesses0(promise, futures, eventLoop, onValue: { _, _ in })
}
}
}
/// Returns a new `EventLoopFuture` that succeeds only if all of the provided futures succeed.
/// The new `EventLoopFuture` will contain all of the values fulfilled by the futures.
///
/// The returned `EventLoopFuture` will fail as soon as any of the futures fails.
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFuture`s to wait on for fulfilled values.
/// - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - Returns: A new `EventLoopFuture` with all of the values fulfilled by the provided futures.
public static func whenAllSucceed(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<[Value]> {
let promise = eventLoop.makePromise(of: [Value].self)
EventLoopFuture.whenAllSucceed(futures, promise: promise)
return promise.futureResult
}
/// Completes the `promise` with the values of all `futures` if all provided futures succeed. If
/// any of the provided futures fail then `promise` will be failed.
///
/// If the _results of all futures should be collected use `andAllComplete` instead.
///
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFutures`s to wait for.
/// - promise: The `EventLoopPromise` to complete with the result of this call.
public static func whenAllSucceed(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<[Value]>) {
let eventLoop = promise.futureResult.eventLoop
let reduced = eventLoop.makePromise(of: Void.self)
let results: UnsafeMutableTransferBox<[Value?]> = .init(.init(repeating: nil, count: futures.count))
#if swift(>=5.7)
let callback = { @Sendable (index: Int, result: Value) in
results.wrappedValue[index] = result
}
#else
let callback = { (index: Int, result: Value) in
results.wrappedValue[index] = result
}
#endif
if eventLoop.inEventLoop {
self._reduceSuccesses0(reduced, futures, eventLoop, onValue: callback)
} else {
eventLoop.execute {
self._reduceSuccesses0(reduced, futures, eventLoop, onValue: callback)
}
}
reduced.futureResult.whenComplete { result in
switch result {
case .success:
// verify that all operations have been completed
assert(!results.wrappedValue.contains(where: { $0 == nil }))
promise.succeed(results.wrappedValue.map { $0! })
case .failure(let error):
promise.fail(error)
}
}
}
#if swift(>=5.7)
@usableFromInline typealias ReduceSuccessCallback<InputValue> = @Sendable (Int, InputValue) -> Void
#else
@usableFromInline typealias ReduceSuccessCallback<InputValue> = (Int, InputValue) -> Void
#endif
/// Loops through the futures array and attaches callbacks to execute `onValue` on the provided `EventLoop` when
/// they succeed. The `onValue` will receive the index of the future that fulfilled the provided `Result`.
///
/// Once all the futures have succeed, the provided promise will succeed.
/// Once any future fails, the provided promise will fail.
@inlinable
internal static func _reduceSuccesses0<InputValue>(
_ promise: EventLoopPromise<Void>,
_ futures: [EventLoopFuture<InputValue>],
_ eventLoop: EventLoop,
onValue: @escaping ReduceSuccessCallback<InputValue>
) {
eventLoop.assertInEventLoop()
var remainingCount = futures.count
if remainingCount == 0 {
promise.succeed(())
return
}
// Sends the result to `onValue` in case of success and succeeds/fails the input promise, if appropriate.
func processResult(_ index: Int, _ result: Result<InputValue, Error>) {
switch result {
case .success(let result):
onValue(index, result)
remainingCount -= 1
if remainingCount == 0 {
promise.succeed(())
}
case .failure(let error):
promise.fail(error)
}
}
// loop through the futures to chain callbacks to execute on the initiating event loop and grab their index
// in the "futures" to pass their result to the caller
for (index, future) in futures.enumerated() {
if future.eventLoop.inEventLoop,
let result = future._value {
// Fast-track already-fulfilled results without the overhead of calling `whenComplete`. This can yield a
// ~20% performance improvement in the case of large arrays where all elements are already fulfilled.
processResult(index, result)
if case .failure = result {
return // Once the promise is failed, future results do not need to be processed.
}
} else {
future.hop(to: eventLoop)
.whenComplete { result in processResult(index, result) }
}
}
}
}
// MARK: "fail slow" reduce
extension EventLoopFuture {
/// Returns a new `EventLoopFuture` that succeeds when all of the provided `EventLoopFuture`s complete.
///
/// The returned `EventLoopFuture` always succeeds, acting as a completion notification.
/// Values fulfilled by each future are discarded.
///
/// If the results are needed, use `whenAllComplete` instead.
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFuture`s to wait for.
/// - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will execute on.
/// - Returns: A new `EventLoopFuture` that succeeds after all futures complete.
@inlinable
public static func andAllComplete(_ futures: [EventLoopFuture<Value>], on eventLoop: EventLoop) -> EventLoopFuture<Void> {
let promise = eventLoop.makePromise(of: Void.self)
EventLoopFuture.andAllComplete(futures, promise: promise)
return promise.futureResult
}
/// Completes a `promise` when all of the provided `EventLoopFuture`s have completed.
///
/// The promise will always be succeeded, regardless of the outcome of the individual futures.
///
/// If the results are required, use `whenAllComplete` instead.
///
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFuture`s to wait for.
/// - promise: The `EventLoopPromise` to succeed when all futures have completed.
@inlinable
public static func andAllComplete(_ futures: [EventLoopFuture<Value>], promise: EventLoopPromise<Void>) {
let eventLoop = promise.futureResult.eventLoop
if eventLoop.inEventLoop {
self._reduceCompletions0(promise, futures, eventLoop, onResult: { _, _ in })
} else {
eventLoop.execute {
self._reduceCompletions0(promise, futures, eventLoop, onResult: { _, _ in })
}
}
}
/// Returns a new `EventLoopFuture` that succeeds when all of the provided `EventLoopFuture`s complete.
/// The new `EventLoopFuture` will contain an array of results, maintaining ordering for each of the `EventLoopFuture`s.
///
/// The returned `EventLoopFuture` always succeeds, regardless of any failures from the waiting futures.
///
/// If it is desired to flatten them into a single `EventLoopFuture` that fails on the first `EventLoopFuture` failure,
/// use one of the `reduce` methods instead.
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFuture`s to gather results from.
/// - on: The `EventLoop` on which the new `EventLoopFuture` callbacks will fire.
/// - Returns: A new `EventLoopFuture` with all the results of the provided futures.
@inlinable
public static func whenAllComplete(_ futures: [EventLoopFuture<Value>],
on eventLoop: EventLoop) -> EventLoopFuture<[Result<Value, Error>]> {
let promise = eventLoop.makePromise(of: [Result<Value, Error>].self)
EventLoopFuture.whenAllComplete(futures, promise: promise)
return promise.futureResult
}
/// Completes a `promise` with the results of all provided `EventLoopFuture`s.
///
/// The promise will always be succeeded, regardless of the outcome of the futures.
///
/// - Parameters:
/// - futures: An array of homogenous `EventLoopFuture`s to gather results from.
/// - promise: The `EventLoopPromise` to complete with the result of the futures.
@inlinable
public static func whenAllComplete(_ futures: [EventLoopFuture<Value>],
promise: EventLoopPromise<[Result<Value, Error>]>) {
let eventLoop = promise.futureResult.eventLoop
let reduced = eventLoop.makePromise(of: Void.self)
let results: UnsafeMutableTransferBox<[Result<Value, Error>]> = .init(.init(repeating: .failure(OperationPlaceholderError()), count: futures.count))
#if swift(>=5.7)
let callback = { @Sendable (index: Int, result: Result<Value, Error>) in
results.wrappedValue[index] = result
}
#else
let callback = { (index: Int, result: Result<Value, Error>) in
results.wrappedValue[index] = result
}
#endif
if eventLoop.inEventLoop {
self._reduceCompletions0(reduced, futures, eventLoop, onResult: callback)
} else {
eventLoop.execute {
self._reduceCompletions0(reduced, futures, eventLoop, onResult: callback)
}
}
reduced.futureResult.whenComplete { result in
switch result {
case .success:
// verify that all operations have been completed
assert(!results.wrappedValue.contains(where: {
guard case let .failure(error) = $0 else { return false }
return error is OperationPlaceholderError
}))
promise.succeed(results.wrappedValue)
case .failure(let error):
promise.fail(error)
}
}
}
#if swift(>=5.7)
@usableFromInline typealias ReduceCompletions<InputValue> = @Sendable (Int, Result<InputValue, Error>) -> Void
#else
@usableFromInline typealias ReduceCompletions<InputValue> = (Int, Result<InputValue, Error>) -> Void
#endif
/// Loops through the futures array and attaches callbacks to execute `onResult` on the provided `EventLoop` when
/// they complete. The `onResult` will receive the index of the future that fulfilled the provided `Result`.
///
/// Once all the futures have completed, the provided promise will succeed.
@inlinable
internal static func _reduceCompletions0<InputValue>(
_ promise: EventLoopPromise<Void>,
_ futures: [EventLoopFuture<InputValue>],
_ eventLoop: EventLoop,
onResult: @escaping ReduceCompletions<InputValue>
) {
eventLoop.assertInEventLoop()
var remainingCount = futures.count
if remainingCount == 0 {
promise.succeed(())
return
}
// Sends the result to `onResult` in case of success and succeeds the input promise, if appropriate.
func processResult(_ index: Int, _ result: Result<InputValue, Error>) {
onResult(index, result)
remainingCount -= 1
if remainingCount == 0 {
promise.succeed(())
}
}
// loop through the futures to chain callbacks to execute on the initiating event loop and grab their index
// in the "futures" to pass their result to the caller
for (index, future) in futures.enumerated() {
if future.eventLoop.inEventLoop,
let result = future._value {
// Fast-track already-fulfilled results without the overhead of calling `whenComplete`. This can yield a
// ~30% performance improvement in the case of large arrays where all elements are already fulfilled.
processResult(index, result)
} else {
future.hop(to: eventLoop)
.whenComplete { result in processResult(index, result) }
}
}
}
}
// MARK: hop
extension EventLoopFuture {
/// Returns an `EventLoopFuture` that fires when this future completes, but executes its callbacks on the
/// target event loop instead of the original one.
///
/// It is common to want to "hop" event loops when you arrange some work: for example, you're closing one channel
/// from another, and want to hop back when the close completes. This method lets you spell that requirement
/// succinctly. It also contains an optimisation for the case when the loop you're hopping *from* is the same as
/// the one you're hopping *to*, allowing you to avoid doing allocations in that case.
///
/// - parameters:
/// - to: The `EventLoop` that the returned `EventLoopFuture` will run on.
/// - returns: An `EventLoopFuture` whose callbacks run on `target` instead of the original loop.
@inlinable
public func hop(to target: EventLoop) -> EventLoopFuture<Value> {
if target === self.eventLoop {
// We're already on that event loop, nothing to do here. Save an allocation.
return self
}
let hoppingPromise = target.makePromise(of: Value.self)
self.cascade(to: hoppingPromise)
return hoppingPromise.futureResult
}
}
// MARK: always
extension EventLoopFuture {
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result.
///
/// - parameters:
/// - callback: the callback that is called when the `EventLoopFuture` is fulfilled.
/// - returns: the current `EventLoopFuture`
@inlinable
@preconcurrency
public func always(_ callback: @escaping @Sendable (Result<Value, Error>) -> Void) -> EventLoopFuture<Value> {
self._always(callback)
}
@usableFromInline typealias AlwaysCallback = @Sendable (Result<Value, Error>) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result.
///
/// - parameters:
/// - callback: the callback that is called when the `EventLoopFuture` is fulfilled.
/// - returns: the current `EventLoopFuture`
@inlinable
public func always(_ callback: @escaping (Result<Value, Error>) -> Void) -> EventLoopFuture<Value> {
self._always(callback)
}
@usableFromInline typealias AlwaysCallback = (Result<Value, Error>) -> Void
#endif
@inlinable
func _always(_ callback: @escaping AlwaysCallback) -> EventLoopFuture<Value> {
self.whenComplete { result in callback(result) }
return self
}
}
// MARK: unwrap
extension EventLoopFuture {
/// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
///
/// Unwrap a future returning a new `EventLoopFuture`. When the resolved future's value is `Optional.some(...)`
/// the new future is created with the identical value. Otherwise the `Error` passed in the `orError` parameter
/// is thrown. For example:
/// ```
/// do {
/// try promise.futureResult.unwrap(orError: ErrorToThrow).wait()
/// } catch ErrorToThrow {
/// ...
/// }
/// ```
///
/// - parameters:
/// - orError: the `Error` that is thrown when then resolved future's value is `Optional.none`.
/// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and the same value as the resolved
/// future.
/// - throws: the `Error` passed in the `orError` parameter when the resolved future's value is `Optional.none`.
@inlinable
public func unwrap<NewValue>(orError error: Error) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
return self.flatMapThrowing { (value) throws -> NewValue in
guard let value = value else {
throw error
}
return value
}
}
/// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
///
/// Unwraps a future returning a new `EventLoopFuture` with either: the value passed in the `orReplace`
/// parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
/// ```
/// promise.futureResult.unwrap(orReplace: 42).wait()
/// ```
///
/// - parameters:
/// - orReplace: the value of the returned `EventLoopFuture` when then resolved future's value is `Optional.some()`.
/// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and the value passed in the `orReplace` parameter.
@inlinable
public func unwrap<NewValue>(orReplace replacement: NewValue) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
return self.map { (value) -> NewValue in
guard let value = value else {
return replacement
}
return value
}
}
#if swift(>=5.7)
/// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
///
/// Unwraps a future returning a new `EventLoopFuture` with either: the value returned by the closure passed in
/// the `orElse` parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
/// ```
/// var x = 2
/// promise.futureResult.unwrap(orElse: { x * 2 }).wait()
/// ```
///
/// - parameters:
/// - orElse: a closure that returns the value of the returned `EventLoopFuture` when then resolved future's value
/// is `Optional.some()`.
/// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and with the value returned by the closure
/// passed in the `orElse` parameter.
@inlinable
@preconcurrency
public func unwrap<NewValue>(
orElse callback: @escaping @Sendable () -> NewValue
) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
self._unwrap(orElse: callback)
}
@usableFromInline typealias UnwrapCallback<NewValue> = @Sendable () -> NewValue
#else
/// Unwrap an `EventLoopFuture` where its type parameter is an `Optional`.
///
/// Unwraps a future returning a new `EventLoopFuture` with either: the value returned by the closure passed in
/// the `orElse` parameter when the future resolved with value Optional.none, or the same value otherwise. For example:
/// ```
/// var x = 2
/// promise.futureResult.unwrap(orElse: { x * 2 }).wait()
/// ```
///
/// - parameters:
/// - orElse: a closure that returns the value of the returned `EventLoopFuture` when then resolved future's value
/// is `Optional.some()`.
/// - returns: an new `EventLoopFuture` with new type parameter `NewValue` and with the value returned by the closure
/// passed in the `orElse` parameter.
@inlinable
public func unwrap<NewValue>(
orElse callback: @escaping () -> NewValue
) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
self._unwrap(orElse: callback)
}
@usableFromInline typealias UnwrapCallback<NewValue> = () -> NewValue
#endif
@inlinable
func _unwrap<NewValue>(
orElse callback: @escaping UnwrapCallback<NewValue>
) -> EventLoopFuture<NewValue> where Value == Optional<NewValue> {
return self.map { (value) -> NewValue in
guard let value = value else {
return callback()
}
return value
}
}
}
// MARK: may block
extension EventLoopFuture {
#if swift(>=5.7)
/// Chain an `EventLoopFuture<NewValue>` providing the result of a IO / task that may block. For example:
///
/// promise.futureResult.flatMapBlocking(onto: DispatchQueue.global()) { value in Int
/// blockingTask(value)
/// }
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: Function that will receive the value of this `EventLoopFuture` and return
/// a new `EventLoopFuture`.
@inlinable
@preconcurrency
public func flatMapBlocking<NewValue>(
onto queue: DispatchQueue,
_ callbackMayBlock: @escaping @Sendable (Value) throws -> NewValue
) -> EventLoopFuture<NewValue> {
self._flatMapBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias FlatMapBlockingCallback<NewValue> = @Sendable (Value) throws -> NewValue
#else
/// Chain an `EventLoopFuture<NewValue>` providing the result of a IO / task that may block. For example:
///
/// promise.futureResult.flatMapBlocking(onto: DispatchQueue.global()) { value in Int
/// blockingTask(value)
/// }
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: Function that will receive the value of this `EventLoopFuture` and return
/// a new `EventLoopFuture`.
@inlinable
public func flatMapBlocking<NewValue>(
onto queue: DispatchQueue,
_ callbackMayBlock: @escaping (Value) throws -> NewValue
) -> EventLoopFuture<NewValue> {
self._flatMapBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias FlatMapBlockingCallback<NewValue> = (Value) throws -> NewValue
#endif
@inlinable
func _flatMapBlocking<NewValue>(
onto queue: DispatchQueue,
_ callbackMayBlock: @escaping FlatMapBlockingCallback<NewValue>
) -> EventLoopFuture<NewValue> {
return self.flatMap { result in
queue.asyncWithFuture(eventLoop: self.eventLoop) { try callbackMayBlock(result) }
}
}
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a success result. The observer callback is permitted to block.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `map` or `flatMap`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: The callback that is called with the successful result of the `EventLoopFuture`.
@inlinable
public func whenSuccessBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Value) -> Void) {
self.whenSuccess { value in
queue.async { callbackMayBlock(value) }
}
}
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a failure result. The observer callback is permitted to block.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: The callback that is called with the failed result of the `EventLoopFuture`.
@inlinable
@preconcurrency
public func whenFailureBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping @Sendable (Error) -> Void) {
self._whenFailureBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias WhenFailureBlockingCallback = @Sendable (Error) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has a failure result. The observer callback is permitted to block.
///
/// An observer callback cannot return a value, meaning that this function cannot be chained
/// from. If you are attempting to create a computation pipeline, consider `recover` or `flatMapError`.
/// If you find yourself passing the results from this `EventLoopFuture` to a new `EventLoopPromise`
/// in the body of this function, consider using `cascade` instead.
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: The callback that is called with the failed result of the `EventLoopFuture`.
@inlinable
public func whenFailureBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Error) -> Void) {
self._whenFailureBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias WhenFailureBlockingCallback = (Error) -> Void
#endif
@inlinable
func _whenFailureBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping WhenFailureBlockingCallback) {
self.whenFailure { err in
queue.async { callbackMayBlock(err) }
}
}
#if swift(>=5.7)
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result. The observer callback is permitted to block.
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: The callback that is called when the `EventLoopFuture` is fulfilled.
@inlinable
@preconcurrency
public func whenCompleteBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping @Sendable (Result<Value, Error>) -> Void) {
self._whenCompleteBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias WhenCompleteBlocking = @Sendable (Result<Value, Error>) -> Void
#else
/// Adds an observer callback to this `EventLoopFuture` that is called when the
/// `EventLoopFuture` has any result. The observer callback is permitted to block.
///
/// - parameters:
/// - onto: the `DispatchQueue` on which the blocking IO / task specified by `callbackMayBlock` is scheduled.
/// - callbackMayBlock: The callback that is called when the `EventLoopFuture` is fulfilled.
@inlinable
public func whenCompleteBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping (Result<Value, Error>) -> Void) {
self._whenCompleteBlocking(onto: queue, callbackMayBlock)
}
@usableFromInline typealias WhenCompleteBlocking = (Result<Value, Error>) -> Void
#endif
@inlinable
func _whenCompleteBlocking(onto queue: DispatchQueue, _ callbackMayBlock: @escaping WhenCompleteBlocking) {
self.whenComplete { value in
queue.async { callbackMayBlock(value) }
}
}
}
// MARK: assertion
extension EventLoopFuture {
/// Attaches a callback to the `EventLoopFuture` that asserts the original future's success.
///
/// If the original future fails, it triggers an assertion failure, causing a runtime error during development.
/// The assertion failure will include the file and line of the calling site.
///
/// - parameters:
/// - file: The file this function was called in, for debugging purposes.
/// - line: The line this function was called on, for debugging purposes.
@inlinable
public func assertSuccess(file: StaticString = #fileID, line: UInt = #line) -> EventLoopFuture<Value> {
return self.always { result in
switch result {
case .success:
()
case .failure(let error):
assertionFailure("Expected success, but got failure: \(error)", file: file, line: line)
}
}
}
/// Attaches a callback to the `EventLoopFuture` that asserts the original future's failure.
///
/// If the original future succeeds, it triggers an assertion failure, causing a runtime error during development.
/// The assertion failure will include the file and line of the calling site.
///
/// - parameters:
/// - file: The file this function was called in, for debugging purposes.
/// - line: The line this function was called on, for debugging purposes.
@inlinable
public func assertFailure(file: StaticString = #fileID, line: UInt = #line) -> EventLoopFuture<Value> {
return self.always { result in
switch result {
case .success(let value):
assertionFailure("Expected failure, but got success: \(value)", file: file, line: line)
case .failure:
()
}
}
}
/// Attaches a callback to the `EventLoopFuture` that preconditions the original future's success.
///
/// If the original future fails, it triggers a precondition failure, causing a runtime error during development.
/// The precondition failure will include the file and line of the calling site.
///
/// - parameters:
/// - file: The file this function was called in, for debugging purposes.
/// - line: The line this function was called on, for debugging purposes.
@inlinable
public func preconditionSuccess(file: StaticString = #fileID, line: UInt = #line) -> EventLoopFuture<Value> {
return self.always { result in
switch result {
case .success:
()
case .failure(let error):
Swift.preconditionFailure("Expected success, but got failure: \(error)", file: file, line: line)
}
}
}
/// Attaches a callback to the `EventLoopFuture` that preconditions the original future's failure.
///
/// If the original future succeeds, it triggers a precondition failure, causing a runtime error during development.
/// The precondition failure will include the file and line of the calling site.
///
/// - parameters:
/// - file: The file this function was called in, for debugging purposes.
/// - line: The line this function was called on, for debugging purposes.
@inlinable
public func preconditionFailure(file: StaticString = #fileID, line: UInt = #line) -> EventLoopFuture<Value> {
return self.always { result in
switch result {
case .success(let value):
Swift.preconditionFailure("Expected failure, but got success: \(value)", file: file, line: line)
case .failure:
()
}
}
}
}
/// An opaque identifier for a specific `EventLoopFuture`.
///
/// This is used only when attempting to provide high-fidelity diagnostics of leaked
/// `EventLoopFuture`s. It is entirely opaque and can only be stored in a simple
/// tracking data structure.
public struct _NIOEventLoopFutureIdentifier: Hashable, Sendable {
private var opaqueID: UInt
@usableFromInline
internal init<T>(_ future: EventLoopFuture<T>) {
self.opaqueID = _NIOEventLoopFutureIdentifier.obfuscatePointerValue(future: future)
}
private static func obfuscatePointerValue<T>(future: EventLoopFuture<T>) -> UInt {
// Note:
// 1. 0xbf15ca5d is randomly picked such that it fits into both 32 and 64 bit address spaces
// 2. XOR with 0xbf15ca5d so that Memory Graph Debugger and other memory debugging tools
// won't see it as a reference.
return UInt(bitPattern: ObjectIdentifier(future)) ^ 0xbf15ca5d
}
}
// EventLoopPromise is a reference type, but by its very nature is Sendable.
extension EventLoopPromise: Sendable { }
// EventLoopFuture is a reference type, but it is Sendable. However, we enforce
// that by way of the guarantees of the EventLoop protocol, so the compiler cannot
// check it.
extension EventLoopFuture: @unchecked Sendable { }
extension EventLoopPromise where Value == Void {
// Deliver a successful result to the associated `EventLoopFuture<Void>` object.
@inlinable
public func succeed() {
succeed(Void())
}
}