68 lines
2.4 KiB
Python
68 lines
2.4 KiB
Python
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
import argparse
|
|
|
|
def generate_prompt(question, prompt_file="prompt.md", metadata_file="metadata.sql"):
|
|
with open(prompt_file, "r") as f:
|
|
prompt = f.read()
|
|
|
|
with open(metadata_file, "r") as f:
|
|
table_metadata_string = f.read()
|
|
|
|
prompt = prompt.format(
|
|
user_question=question, table_metadata_string=table_metadata_string
|
|
)
|
|
return prompt
|
|
|
|
|
|
def get_tokenizer_model(model_name):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
model_name,
|
|
trust_remote_code=True,
|
|
torch_dtype=torch.float16,
|
|
device_map="auto",
|
|
use_cache=True,
|
|
)
|
|
return tokenizer, model
|
|
|
|
def run_inference(question, prompt_file="prompt.md", metadata_file="metadata.sql"):
|
|
tokenizer, model = get_tokenizer_model("defog/sqlcoder-7b-2")
|
|
prompt = generate_prompt(question, prompt_file, metadata_file)
|
|
|
|
# make sure the model stops generating at triple ticks
|
|
# eos_token_id = tokenizer.convert_tokens_to_ids(["```"])[0]
|
|
eos_token_id = tokenizer.eos_token_id
|
|
pipe = pipeline(
|
|
"text-generation",
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
max_new_tokens=300,
|
|
do_sample=False,
|
|
return_full_text=False, # added return_full_text parameter to prevent splitting issues with prompt
|
|
num_beams=5, # do beam search with 5 beams for high quality results
|
|
)
|
|
generated_query = (
|
|
pipe(
|
|
prompt,
|
|
num_return_sequences=1,
|
|
eos_token_id=eos_token_id,
|
|
pad_token_id=eos_token_id,
|
|
)[0]["generated_text"]
|
|
.split(";")[0]
|
|
.split("```")[0]
|
|
.strip()
|
|
+ ";"
|
|
)
|
|
return generated_query
|
|
|
|
if __name__ == "__main__":
|
|
# Parse arguments
|
|
_default_question="Do we get more sales from customers in New York compared to customers in San Francisco? Give me the total sales for each city, and the difference between the two."
|
|
parser = argparse.ArgumentParser(description="Run inference on a question")
|
|
parser.add_argument("-q","--question", type=str, default=_default_question, help="Question to run inference on")
|
|
args = parser.parse_args()
|
|
question = args.question
|
|
print("Loading a model and generating a SQL query for answering your question...")
|
|
print(run_inference(question))
|