rust/compiler/rustc_ty_utils/src/ty.rs

376 lines
14 KiB
Rust

use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::LangItem;
use rustc_hir::def::DefKind;
use rustc_index::bit_set::BitSet;
use rustc_middle::bug;
use rustc_middle::query::Providers;
use rustc_middle::ty::{
self, EarlyBinder, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitableExt,
TypeVisitor, Upcast,
};
use rustc_span::DUMMY_SP;
use rustc_span::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
use rustc_trait_selection::traits;
use tracing::{debug, instrument};
#[instrument(level = "debug", skip(tcx), ret)]
fn sized_constraint_for_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
use rustc_type_ir::TyKind::*;
match ty.kind() {
// these are always sized
Bool
| Char
| Int(..)
| Uint(..)
| Float(..)
| RawPtr(..)
| Ref(..)
| FnDef(..)
| FnPtr(..)
| Array(..)
| Closure(..)
| CoroutineClosure(..)
| Coroutine(..)
| CoroutineWitness(..)
| Never
| Dynamic(_, _, ty::DynStar) => None,
// these are never sized
Str | Slice(..) | Dynamic(_, _, ty::Dyn) | Foreign(..) => Some(ty),
Pat(ty, _) => sized_constraint_for_ty(tcx, *ty),
Tuple(tys) => tys.last().and_then(|&ty| sized_constraint_for_ty(tcx, ty)),
// recursive case
Adt(adt, args) => adt.sized_constraint(tcx).and_then(|intermediate| {
let ty = intermediate.instantiate(tcx, args);
sized_constraint_for_ty(tcx, ty)
}),
// these can be sized or unsized
Param(..) | Alias(..) | Error(_) => Some(ty),
Placeholder(..) | Bound(..) | Infer(..) => {
bug!("unexpected type `{ty:?}` in sized_constraint_for_ty")
}
}
}
fn defaultness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::Defaultness {
match tcx.hir_node_by_def_id(def_id) {
hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness,
hir::Node::ImplItem(hir::ImplItem { defaultness, .. })
| hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness,
node => {
bug!("`defaultness` called on {:?}", node);
}
}
}
/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
/// - an obviously-unsized type
/// - a type parameter or projection whose sizedness can't be known
#[instrument(level = "debug", skip(tcx), ret)]
fn adt_sized_constraint<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> {
if let Some(def_id) = def_id.as_local() {
if let ty::Representability::Infinite(_) = tcx.representability(def_id) {
return None;
}
}
let def = tcx.adt_def(def_id);
if !def.is_struct() {
bug!("`adt_sized_constraint` called on non-struct type: {def:?}");
}
let tail_def = def.non_enum_variant().tail_opt()?;
let tail_ty = tcx.type_of(tail_def.did).instantiate_identity();
let constraint_ty = sized_constraint_for_ty(tcx, tail_ty)?;
if let Err(guar) = constraint_ty.error_reported() {
return Some(ty::EarlyBinder::bind(Ty::new_error(tcx, guar)));
}
// perf hack: if there is a `constraint_ty: Sized` bound, then we know
// that the type is sized and do not need to check it on the impl.
let sized_trait_def_id = tcx.require_lang_item(LangItem::Sized, None);
let predicates = tcx.predicates_of(def.did()).predicates;
if predicates.iter().any(|(p, _)| {
p.as_trait_clause().is_some_and(|trait_pred| {
trait_pred.def_id() == sized_trait_def_id
&& trait_pred.self_ty().skip_binder() == constraint_ty
})
}) {
return None;
}
Some(ty::EarlyBinder::bind(constraint_ty))
}
/// See `ParamEnv` struct definition for details.
fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
// Compute the bounds on Self and the type parameters.
let ty::InstantiatedPredicates { mut predicates, .. } =
tcx.predicates_of(def_id).instantiate_identity(tcx);
// Finally, we have to normalize the bounds in the environment, in
// case they contain any associated type projections. This process
// can yield errors if the put in illegal associated types, like
// `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
// report these errors right here; this doesn't actually feel
// right to me, because constructing the environment feels like a
// kind of an "idempotent" action, but I'm not sure where would be
// a better place. In practice, we construct environments for
// every fn once during type checking, and we'll abort if there
// are any errors at that point, so outside of type inference you can be
// sure that this will succeed without errors anyway.
if tcx.def_kind(def_id) == DefKind::AssocFn
&& let assoc_item = tcx.associated_item(def_id)
&& assoc_item.container == ty::AssocItemContainer::Trait
&& assoc_item.defaultness(tcx).has_value()
{
let sig = tcx.fn_sig(def_id).instantiate_identity();
// We accounted for the binder of the fn sig, so skip the binder.
sig.skip_binder().visit_with(&mut ImplTraitInTraitFinder {
tcx,
fn_def_id: def_id,
bound_vars: sig.bound_vars(),
predicates: &mut predicates,
seen: FxHashSet::default(),
depth: ty::INNERMOST,
});
}
// We extend the param-env of our item with the const conditions of the item,
// since we're allowed to assume `~const` bounds hold within the item itself.
if tcx.is_conditionally_const(def_id) {
predicates.extend(
tcx.const_conditions(def_id).instantiate_identity(tcx).into_iter().map(
|(trait_ref, _)| trait_ref.to_host_effect_clause(tcx, ty::BoundConstness::Maybe),
),
);
}
let local_did = def_id.as_local();
let unnormalized_env =
ty::ParamEnv::new(tcx.mk_clauses(&predicates), traits::Reveal::UserFacing);
let body_id = local_did.unwrap_or(CRATE_DEF_ID);
let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
traits::normalize_param_env_or_error(tcx, unnormalized_env, cause)
}
/// Walk through a function type, gathering all RPITITs and installing a
/// `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` predicate into the
/// predicates list. This allows us to observe that an RPITIT projects to
/// its corresponding opaque within the body of a default-body trait method.
struct ImplTraitInTraitFinder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
predicates: &'a mut Vec<ty::Clause<'tcx>>,
fn_def_id: DefId,
bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
seen: FxHashSet<DefId>,
depth: ty::DebruijnIndex,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ImplTraitInTraitFinder<'_, 'tcx> {
fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(&mut self, binder: &ty::Binder<'tcx, T>) {
self.depth.shift_in(1);
binder.super_visit_with(self);
self.depth.shift_out(1);
}
fn visit_ty(&mut self, ty: Ty<'tcx>) {
if let ty::Alias(ty::Projection, unshifted_alias_ty) = *ty.kind()
&& let Some(
ty::ImplTraitInTraitData::Trait { fn_def_id, .. }
| ty::ImplTraitInTraitData::Impl { fn_def_id, .. },
) = self.tcx.opt_rpitit_info(unshifted_alias_ty.def_id)
&& fn_def_id == self.fn_def_id
&& self.seen.insert(unshifted_alias_ty.def_id)
{
// We have entered some binders as we've walked into the
// bounds of the RPITIT. Shift these binders back out when
// constructing the top-level projection predicate.
let shifted_alias_ty = self.tcx.fold_regions(unshifted_alias_ty, |re, depth| {
if let ty::ReBound(index, bv) = re.kind() {
if depth != ty::INNERMOST {
return ty::Region::new_error_with_message(
self.tcx,
DUMMY_SP,
"we shouldn't walk non-predicate binders with `impl Trait`...",
);
}
ty::Region::new_bound(self.tcx, index.shifted_out_to_binder(self.depth), bv)
} else {
re
}
});
// If we're lowering to associated item, install the opaque type which is just
// the `type_of` of the trait's associated item. If we're using the old lowering
// strategy, then just reinterpret the associated type like an opaque :^)
let default_ty = self
.tcx
.type_of(shifted_alias_ty.def_id)
.instantiate(self.tcx, shifted_alias_ty.args);
self.predicates.push(
ty::Binder::bind_with_vars(
ty::ProjectionPredicate {
projection_term: shifted_alias_ty.into(),
term: default_ty.into(),
},
self.bound_vars,
)
.upcast(self.tcx),
);
// We walk the *un-shifted* alias ty, because we're tracking the de bruijn
// binder depth, and if we were to walk `shifted_alias_ty` instead, we'd
// have to reset `self.depth` back to `ty::INNERMOST` or something. It's
// easier to just do this.
for bound in self
.tcx
.item_bounds(unshifted_alias_ty.def_id)
.iter_instantiated(self.tcx, unshifted_alias_ty.args)
{
bound.visit_with(self);
}
}
ty.super_visit_with(self)
}
}
fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
tcx.param_env(def_id).with_reveal_all_normalized(tcx)
}
/// If the given trait impl enables exploiting the former order dependence of trait objects,
/// returns its self type; otherwise, returns `None`.
///
/// See [`ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects`] for more details.
#[instrument(level = "debug", skip(tcx))]
fn self_ty_of_trait_impl_enabling_order_dep_trait_object_hack(
tcx: TyCtxt<'_>,
def_id: DefId,
) -> Option<EarlyBinder<'_, Ty<'_>>> {
let impl_ =
tcx.impl_trait_header(def_id).unwrap_or_else(|| bug!("called on inherent impl {def_id:?}"));
let trait_ref = impl_.trait_ref.skip_binder();
debug!(?trait_ref);
let is_marker_like = impl_.polarity == ty::ImplPolarity::Positive
&& tcx.associated_item_def_ids(trait_ref.def_id).is_empty();
// Check whether these impls would be ok for a marker trait.
if !is_marker_like {
debug!("not marker-like!");
return None;
}
// impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
if trait_ref.args.len() != 1 {
debug!("impl has args!");
return None;
}
let predicates = tcx.predicates_of(def_id);
if predicates.parent.is_some() || !predicates.predicates.is_empty() {
debug!(?predicates, "impl has predicates!");
return None;
}
let self_ty = trait_ref.self_ty();
let self_ty_matches = match self_ty.kind() {
ty::Dynamic(data, re, _) if re.is_static() => data.principal().is_none(),
_ => false,
};
if self_ty_matches {
debug!("MATCHES!");
Some(EarlyBinder::bind(self_ty))
} else {
debug!("non-matching self type");
None
}
}
/// Check if a function is async.
fn asyncness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Asyncness {
let node = tcx.hir_node_by_def_id(def_id);
node.fn_sig().map_or(ty::Asyncness::No, |sig| match sig.header.asyncness {
hir::IsAsync::Async(_) => ty::Asyncness::Yes,
hir::IsAsync::NotAsync => ty::Asyncness::No,
})
}
fn unsizing_params_for_adt<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> BitSet<u32> {
let def = tcx.adt_def(def_id);
let num_params = tcx.generics_of(def_id).count();
let maybe_unsizing_param_idx = |arg: ty::GenericArg<'tcx>| match arg.unpack() {
ty::GenericArgKind::Type(ty) => match ty.kind() {
ty::Param(p) => Some(p.index),
_ => None,
},
// We can't unsize a lifetime
ty::GenericArgKind::Lifetime(_) => None,
ty::GenericArgKind::Const(ct) => match ct.kind() {
ty::ConstKind::Param(p) => Some(p.index),
_ => None,
},
};
// The last field of the structure has to exist and contain type/const parameters.
let Some((tail_field, prefix_fields)) = def.non_enum_variant().fields.raw.split_last() else {
return BitSet::new_empty(num_params);
};
let mut unsizing_params = BitSet::new_empty(num_params);
for arg in tcx.type_of(tail_field.did).instantiate_identity().walk() {
if let Some(i) = maybe_unsizing_param_idx(arg) {
unsizing_params.insert(i);
}
}
// Ensure none of the other fields mention the parameters used
// in unsizing.
for field in prefix_fields {
for arg in tcx.type_of(field.did).instantiate_identity().walk() {
if let Some(i) = maybe_unsizing_param_idx(arg) {
unsizing_params.remove(i);
}
}
}
unsizing_params
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers {
asyncness,
adt_sized_constraint,
param_env,
param_env_reveal_all_normalized,
self_ty_of_trait_impl_enabling_order_dep_trait_object_hack,
defaultness,
unsizing_params_for_adt,
..*providers
};
}