rust/compiler/rustc_codegen_gcc/src/common.rs

460 lines
16 KiB
Rust

use gccjit::{LValue, RValue, ToRValue, Type};
use rustc_abi as abi;
use rustc_abi::HasDataLayout;
use rustc_abi::Primitive::Pointer;
use rustc_codegen_ssa::traits::{
BaseTypeCodegenMethods, ConstCodegenMethods, MiscCodegenMethods, StaticCodegenMethods,
};
use rustc_middle::mir::Mutability;
use rustc_middle::mir::interpret::{ConstAllocation, GlobalAlloc, Scalar};
use rustc_middle::ty::layout::LayoutOf;
use crate::consts::const_alloc_to_gcc;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_ptrcast(&self, val: RValue<'gcc>, ty: Type<'gcc>) -> RValue<'gcc> {
self.context.new_cast(None, val, ty)
}
pub fn const_bytes(&self, bytes: &[u8]) -> RValue<'gcc> {
bytes_in_context(self, bytes)
}
fn global_string(&self, string: &str) -> LValue<'gcc> {
// TODO(antoyo): handle non-null-terminated strings.
let string = self.context.new_string_literal(string);
let sym = self.generate_local_symbol_name("str");
let global = self.declare_private_global(&sym, self.val_ty(string));
global.global_set_initializer_rvalue(string);
global
// TODO(antoyo): set linkage.
}
pub fn const_bitcast(&self, value: RValue<'gcc>, typ: Type<'gcc>) -> RValue<'gcc> {
if value.get_type() == self.bool_type.make_pointer() {
if let Some(pointee) = typ.get_pointee() {
if pointee.dyncast_vector().is_some() {
panic!()
}
}
}
// NOTE: since bitcast makes a value non-constant, don't bitcast if not necessary as some
// SIMD builtins require a constant value.
self.bitcast_if_needed(value, typ)
}
}
pub fn bytes_in_context<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, bytes: &[u8]) -> RValue<'gcc> {
let context = &cx.context;
let byte_type = context.new_type::<u8>();
let typ = context.new_array_type(None, byte_type, bytes.len() as u64);
let elements: Vec<_> =
bytes.iter().map(|&byte| context.new_rvalue_from_int(byte_type, byte as i32)).collect();
context.new_array_constructor(None, typ, &elements)
}
pub fn type_is_pointer(typ: Type<'_>) -> bool {
typ.get_pointee().is_some()
}
impl<'gcc, 'tcx> ConstCodegenMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn const_null(&self, typ: Type<'gcc>) -> RValue<'gcc> {
if type_is_pointer(typ) { self.context.new_null(typ) } else { self.const_int(typ, 0) }
}
fn const_undef(&self, typ: Type<'gcc>) -> RValue<'gcc> {
let local = self.current_func.borrow().expect("func").new_local(None, typ, "undefined");
if typ.is_struct().is_some() {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
let pointer = local.get_address(None);
self.structs_as_pointer.borrow_mut().insert(pointer);
pointer
} else {
local.to_rvalue()
}
}
fn const_poison(&self, typ: Type<'gcc>) -> RValue<'gcc> {
// No distinction between undef and poison.
self.const_undef(typ)
}
fn const_bool(&self, val: bool) -> RValue<'gcc> {
self.const_uint(self.type_i1(), val as u64)
}
fn const_i8(&self, i: i8) -> RValue<'gcc> {
self.const_int(self.type_i8(), i as i64)
}
fn const_i16(&self, i: i16) -> RValue<'gcc> {
self.const_int(self.type_i16(), i as i64)
}
fn const_i32(&self, i: i32) -> RValue<'gcc> {
self.const_int(self.type_i32(), i as i64)
}
fn const_int(&self, typ: Type<'gcc>, int: i64) -> RValue<'gcc> {
self.gcc_int(typ, int)
}
fn const_u8(&self, i: u8) -> RValue<'gcc> {
self.const_uint(self.type_u8(), i as u64)
}
fn const_u32(&self, i: u32) -> RValue<'gcc> {
self.const_uint(self.type_u32(), i as u64)
}
fn const_u64(&self, i: u64) -> RValue<'gcc> {
self.const_uint(self.type_u64(), i)
}
fn const_u128(&self, i: u128) -> RValue<'gcc> {
self.const_uint_big(self.type_u128(), i)
}
fn const_usize(&self, i: u64) -> RValue<'gcc> {
let bit_size = self.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1 << bit_size));
}
self.const_uint(self.usize_type, i)
}
fn const_uint(&self, typ: Type<'gcc>, int: u64) -> RValue<'gcc> {
self.gcc_uint(typ, int)
}
fn const_uint_big(&self, typ: Type<'gcc>, num: u128) -> RValue<'gcc> {
self.gcc_uint_big(typ, num)
}
fn const_real(&self, typ: Type<'gcc>, val: f64) -> RValue<'gcc> {
self.context.new_rvalue_from_double(typ, val)
}
fn const_str(&self, s: &str) -> (RValue<'gcc>, RValue<'gcc>) {
let str_global = *self
.const_str_cache
.borrow_mut()
.raw_entry_mut()
.from_key(s)
.or_insert_with(|| (s.to_owned(), self.global_string(s)))
.1;
let len = s.len();
let cs = self.const_ptrcast(
str_global.get_address(None),
self.type_ptr_to(self.layout_of(self.tcx.types.str_).gcc_type(self)),
);
(cs, self.const_usize(len as u64))
}
fn const_struct(&self, values: &[RValue<'gcc>], packed: bool) -> RValue<'gcc> {
let fields: Vec<_> = values.iter().map(|value| value.get_type()).collect();
// TODO(antoyo): cache the type? It's anonymous, so probably not.
let typ = self.type_struct(&fields, packed);
let struct_type = typ.is_struct().expect("struct type");
self.context.new_struct_constructor(None, struct_type.as_type(), None, values)
}
fn const_vector(&self, values: &[RValue<'gcc>]) -> RValue<'gcc> {
let typ = self.type_vector(values[0].get_type(), values.len() as u64);
self.context.new_rvalue_from_vector(None, typ, values)
}
fn const_to_opt_uint(&self, _v: RValue<'gcc>) -> Option<u64> {
// TODO(antoyo)
None
}
fn const_to_opt_u128(&self, _v: RValue<'gcc>, _sign_ext: bool) -> Option<u128> {
// TODO(antoyo)
None
}
fn scalar_to_backend(&self, cv: Scalar, layout: abi::Scalar, ty: Type<'gcc>) -> RValue<'gcc> {
let bitsize = if layout.is_bool() { 1 } else { layout.size(self).bits() };
match cv {
Scalar::Int(int) => {
let data = int.to_bits(layout.size(self));
// FIXME(antoyo): there's some issues with using the u128 code that follows, so hard-code
// the paths for floating-point values.
if ty == self.float_type {
return self
.context
.new_rvalue_from_double(ty, f32::from_bits(data as u32) as f64);
}
if ty == self.double_type {
return self.context.new_rvalue_from_double(ty, f64::from_bits(data as u64));
}
let value = self.const_uint_big(self.type_ix(bitsize), data);
let bytesize = layout.size(self).bytes();
if bitsize > 1 && ty.is_integral() && bytesize as u32 == ty.get_size() {
// NOTE: since the intrinsic _xabort is called with a bitcast, which
// is non-const, but expects a constant, do a normal cast instead of a bitcast.
// FIXME(antoyo): fix bitcast to work in constant contexts.
// TODO(antoyo): perhaps only use bitcast for pointers?
self.context.new_cast(None, value, ty)
} else {
// TODO(bjorn3): assert size is correct
self.const_bitcast(value, ty)
}
}
Scalar::Ptr(ptr, _size) => {
let (prov, offset) = ptr.into_parts(); // we know the `offset` is relative
let alloc_id = prov.alloc_id();
let base_addr = match self.tcx.global_alloc(alloc_id) {
GlobalAlloc::Memory(alloc) => {
let init = const_alloc_to_gcc(self, alloc);
let alloc = alloc.inner();
let value = match alloc.mutability {
Mutability::Mut => self.static_addr_of_mut(init, alloc.align, None),
_ => self.static_addr_of(init, alloc.align, None),
};
if !self.sess().fewer_names() {
// TODO(antoyo): set value name.
}
value
}
GlobalAlloc::Function { instance, .. } => self.get_fn_addr(instance),
GlobalAlloc::VTable(ty, dyn_ty) => {
let alloc = self
.tcx
.global_alloc(self.tcx.vtable_allocation((ty, dyn_ty.principal())))
.unwrap_memory();
let init = const_alloc_to_gcc(self, alloc);
self.static_addr_of(init, alloc.inner().align, None)
}
GlobalAlloc::Static(def_id) => {
assert!(self.tcx.is_static(def_id));
self.get_static(def_id).get_address(None)
}
};
let ptr_type = base_addr.get_type();
let base_addr = self.const_bitcast(base_addr, self.usize_type);
let offset =
self.context.new_rvalue_from_long(self.usize_type, offset.bytes() as i64);
let ptr = self.const_bitcast(base_addr + offset, ptr_type);
if !matches!(layout.primitive(), Pointer(_)) {
self.const_bitcast(ptr.dereference(None).to_rvalue(), ty)
} else {
self.const_bitcast(ptr, ty)
}
}
}
}
fn const_data_from_alloc(&self, alloc: ConstAllocation<'tcx>) -> Self::Value {
const_alloc_to_gcc(self, alloc)
}
fn const_ptr_byte_offset(&self, base_addr: Self::Value, offset: abi::Size) -> Self::Value {
self.context
.new_array_access(None, base_addr, self.const_usize(offset.bytes()))
.get_address(None)
}
}
pub trait SignType<'gcc, 'tcx> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc>;
}
impl<'gcc, 'tcx> SignType<'gcc, 'tcx> for Type<'gcc> {
fn is_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_i8(cx) || self.is_i16(cx) || self.is_i32(cx) || self.is_i64(cx) || self.is_i128(cx)
}
fn is_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_u8(cx) || self.is_u16(cx) || self.is_u32(cx) || self.is_u64(cx) || self.is_u128(cx)
}
fn to_signed(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if self.is_u8(cx) {
cx.i8_type
} else if self.is_u16(cx) {
cx.i16_type
} else if self.is_u32(cx) {
cx.i32_type
} else if self.is_u64(cx) {
cx.i64_type
} else if self.is_u128(cx) {
cx.i128_type
} else if self.is_uchar(cx) {
cx.char_type
} else if self.is_ushort(cx) {
cx.short_type
} else if self.is_uint(cx) {
cx.int_type
} else if self.is_ulong(cx) {
cx.long_type
} else if self.is_ulonglong(cx) {
cx.longlong_type
} else {
*self
}
}
fn to_unsigned(&self, cx: &CodegenCx<'gcc, 'tcx>) -> Type<'gcc> {
if self.is_i8(cx) {
cx.u8_type
} else if self.is_i16(cx) {
cx.u16_type
} else if self.is_i32(cx) {
cx.u32_type
} else if self.is_i64(cx) {
cx.u64_type
} else if self.is_i128(cx) {
cx.u128_type
} else if self.is_char(cx) {
cx.uchar_type
} else if self.is_short(cx) {
cx.ushort_type
} else if self.is_int(cx) {
cx.uint_type
} else if self.is_long(cx) {
cx.ulong_type
} else if self.is_longlong(cx) {
cx.ulonglong_type
} else {
*self
}
}
}
pub trait TypeReflection<'gcc, 'tcx> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool;
fn is_vector(&self) -> bool;
}
impl<'gcc, 'tcx> TypeReflection<'gcc, 'tcx> for Type<'gcc> {
fn is_uchar(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.uchar_type
}
fn is_ushort(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ushort_type
}
fn is_uint(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.uint_type
}
fn is_ulong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulong_type
}
fn is_ulonglong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.ulonglong_type
}
fn is_char(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.char_type
}
fn is_short(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.short_type
}
fn is_int(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.int_type
}
fn is_long(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.long_type
}
fn is_longlong(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.longlong_type
}
fn is_i8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.i8_type)
}
fn is_u8(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.u8_type)
}
fn is_i16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.i16_type)
}
fn is_u16(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.u16_type)
}
fn is_i32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.i32_type)
}
fn is_u32(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.u32_type)
}
fn is_i64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.i64_type)
}
fn is_u64(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.is_compatible_with(cx.u64_type)
}
fn is_i128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.i128_type.unqualified()
}
fn is_u128(&self, cx: &CodegenCx<'gcc, 'tcx>) -> bool {
self.unqualified() == cx.u128_type.unqualified()
}
fn is_vector(&self) -> bool {
let mut typ = *self;
loop {
if typ.dyncast_vector().is_some() {
return true;
}
let old_type = typ;
typ = typ.unqualified();
if old_type == typ {
break;
}
}
false
}
}