Rollup merge of #76484 - fusion-engineering-forks:maybe-uninit-drop, r=RalfJung

Add MaybeUninit::assume_init_drop.

`ManuallyDrop`'s documentation tells the user to use `MaybeUninit` instead when handling uninitialized data. However, the main functionality of `ManuallyDrop` (`drop`) is not available directly on `MaybeUninit`. Adding it makes it easier to switch from one to the other.

I re-used the `maybe_uninit_extra` feature and tracking issue number (#63567), since it seems very related. (And to avoid creating too many features tracking issues for `MaybeUninit`.)
This commit is contained in:
Ralf Jung 2020-09-12 10:43:17 +02:00 committed by GitHub
commit c20356e96b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 42 additions and 11 deletions

View File

@ -103,7 +103,7 @@ impl<T, const N: usize> Iterator for IntoIter<T, N> {
// dead now (i.e. do not touch). As `idx` was the start of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).read() }
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
@ -136,7 +136,7 @@ impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
// dead now (i.e. do not touch). As `idx` was the end of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).read() }
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
}

View File

@ -2,6 +2,7 @@ use crate::any::type_name;
use crate::fmt;
use crate::intrinsics;
use crate::mem::ManuallyDrop;
use crate::ptr;
/// A wrapper type to construct uninitialized instances of `T`.
///
@ -471,6 +472,8 @@ impl<T> MaybeUninit<T> {
/// *immediate* undefined behavior, but will cause undefined behavior with most
/// safe operations (including dropping it).
///
/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
///
/// # Examples
///
/// Correct usage of this method:
@ -519,8 +522,8 @@ impl<T> MaybeUninit<T> {
/// this initialization invariant.
///
/// Moreover, this leaves a copy of the same data behind in the `MaybeUninit<T>`. When using
/// multiple copies of the data (by calling `read` multiple times, or first
/// calling `read` and then [`assume_init`]), it is your responsibility
/// multiple copies of the data (by calling `assume_init_read` multiple times, or first
/// calling `assume_init_read` and then [`assume_init`]), it is your responsibility
/// to ensure that that data may indeed be duplicated.
///
/// [inv]: #initialization-invariant
@ -536,16 +539,16 @@ impl<T> MaybeUninit<T> {
///
/// let mut x = MaybeUninit::<u32>::uninit();
/// x.write(13);
/// let x1 = unsafe { x.read() };
/// let x1 = unsafe { x.assume_init_read() };
/// // `u32` is `Copy`, so we may read multiple times.
/// let x2 = unsafe { x.read() };
/// let x2 = unsafe { x.assume_init_read() };
/// assert_eq!(x1, x2);
///
/// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
/// x.write(None);
/// let x1 = unsafe { x.read() };
/// let x1 = unsafe { x.assume_init_read() };
/// // Duplicating a `None` value is okay, so we may read multiple times.
/// let x2 = unsafe { x.read() };
/// let x2 = unsafe { x.assume_init_read() };
/// assert_eq!(x1, x2);
/// ```
///
@ -557,14 +560,14 @@ impl<T> MaybeUninit<T> {
///
/// let mut x = MaybeUninit::<Option<Vec<u32>>>::uninit();
/// x.write(Some(vec![0,1,2]));
/// let x1 = unsafe { x.read() };
/// let x2 = unsafe { x.read() };
/// let x1 = unsafe { x.assume_init_read() };
/// let x2 = unsafe { x.assume_init_read() };
/// // We now created two copies of the same vector, leading to a double-free ⚠️ when
/// // they both get dropped!
/// ```
#[unstable(feature = "maybe_uninit_extra", issue = "63567")]
#[inline(always)]
pub unsafe fn read(&self) -> T {
pub unsafe fn assume_init_read(&self) -> T {
// SAFETY: the caller must guarantee that `self` is initialized.
// Reading from `self.as_ptr()` is safe since `self` should be initialized.
unsafe {
@ -573,6 +576,34 @@ impl<T> MaybeUninit<T> {
}
}
/// Drops the contained value in place.
///
/// If you have ownership of the `MaybeUninit`, you can use [`assume_init`] instead.
///
/// # Safety
///
/// It is up to the caller to guarantee that the `MaybeUninit<T>` really is
/// in an initialized state. Calling this when the content is not yet fully
/// initialized causes undefined behavior.
///
/// On top of that, all additional invariants of the type `T` must be
/// satisfied, as the `Drop` implementation of `T` (or its members) may
/// rely on this. For example, a `1`-initialized [`Vec<T>`] is considered
/// initialized (under the current implementation; this does not constitute
/// a stable guarantee) because the only requirement the compiler knows
/// about it is that the data pointer must be non-null. Dropping such a
/// `Vec<T>` however will cause undefined behaviour.
///
/// [`assume_init`]: MaybeUninit::assume_init
/// [`Vec<T>`]: ../../std/vec/struct.Vec.html
#[unstable(feature = "maybe_uninit_extra", issue = "63567")]
pub unsafe fn assume_init_drop(&mut self) {
// SAFETY: the caller must guarantee that `self` is initialized and
// satisfies all invariants of `T`.
// Dropping the value in place is safe if that is the case.
unsafe { ptr::drop_in_place(self.as_mut_ptr()) }
}
/// Gets a shared reference to the contained value.
///
/// This can be useful when we want to access a `MaybeUninit` that has been