Type-directed probing for inherent associated types

This commit is contained in:
León Orell Valerian Liehr 2022-12-08 13:31:21 +01:00 committed by León Orell Valerian Liehr
parent eebdfb55fc
commit 488d0c9efd
No known key found for this signature in database
GPG Key ID: D17A07215F68E713
11 changed files with 581 additions and 54 deletions

View File

@ -1,10 +1,10 @@
use crate::astconv::AstConv;
use crate::errors::{ManualImplementation, MissingTypeParams};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::{pluralize, struct_span_err, Applicability, ErrorGuaranteed};
use rustc_errors::{pluralize, struct_span_err, Applicability, Diagnostic, ErrorGuaranteed};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty;
use rustc_middle::ty::{self, Ty};
use rustc_session::parse::feature_err;
use rustc_span::lev_distance::find_best_match_for_name;
use rustc_span::symbol::{sym, Ident};
@ -221,6 +221,168 @@ impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
err.emit()
}
// FIXME(inherent_associated_types): Find similarly named associated types and suggest them.
pub(crate) fn complain_about_inherent_assoc_type_not_found(
&self,
name: Ident,
self_ty: Ty<'tcx>,
candidates: &[DefId],
unsatisfied_predicates: Vec<ty::Predicate<'tcx>>,
span: Span,
) -> ErrorGuaranteed {
let tcx = self.tcx();
let adt_did = self_ty.ty_adt_def().map(|def| def.did());
let add_def_label = |err: &mut Diagnostic| {
if let Some(did) = adt_did {
err.span_label(
tcx.def_span(did),
format!(
"associated item `{name}` not found for this {}",
tcx.def_kind(did).descr(did)
),
);
}
};
if unsatisfied_predicates.is_empty() {
// FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.
let limit = if candidates.len() == 5 { 5 } else { 4 };
let type_candidates = candidates
.iter()
.take(limit)
.map(|candidate| {
format!("- `{}`", tcx.at(span).type_of(candidate).subst_identity())
})
.collect::<Vec<_>>()
.join("\n");
let additional_types = if candidates.len() > limit {
format!("\nand {} more types", candidates.len() - limit)
} else {
String::new()
};
let mut err = struct_span_err!(
tcx.sess,
name.span,
E0220,
"associated type `{name}` not found for `{self_ty}` in the current scope"
);
err.span_label(name.span, format!("associated item not found in `{self_ty}`"));
err.note(&format!(
"the associated type was found for\n{type_candidates}{additional_types}",
));
add_def_label(&mut err);
return err.emit();
}
let mut bound_spans = Vec::new();
// FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.
let mut bound_span_label = |self_ty: Ty<'_>, obligation: &str, quiet: &str| {
let msg = format!(
"doesn't satisfy `{}`",
if obligation.len() > 50 { quiet } else { obligation }
);
match &self_ty.kind() {
// Point at the type that couldn't satisfy the bound.
ty::Adt(def, _) => bound_spans.push((tcx.def_span(def.did()), msg)),
// Point at the trait object that couldn't satisfy the bound.
ty::Dynamic(preds, _, _) => {
for pred in preds.iter() {
match pred.skip_binder() {
ty::ExistentialPredicate::Trait(tr) => {
bound_spans.push((tcx.def_span(tr.def_id), msg.clone()))
}
ty::ExistentialPredicate::Projection(_)
| ty::ExistentialPredicate::AutoTrait(_) => {}
}
}
}
// Point at the closure that couldn't satisfy the bound.
ty::Closure(def_id, _) => {
bound_spans.push((tcx.def_span(*def_id), format!("doesn't satisfy `{quiet}`")))
}
_ => {}
}
};
// FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.
let format_pred = |pred: ty::Predicate<'tcx>| {
let bound_predicate = pred.kind();
match bound_predicate.skip_binder() {
ty::PredicateKind::Clause(ty::Clause::Projection(pred)) => {
let pred = bound_predicate.rebind(pred);
// `<Foo as Iterator>::Item = String`.
let projection_ty = pred.skip_binder().projection_ty;
let substs_with_infer_self = tcx.mk_substs(
std::iter::once(tcx.mk_ty_var(ty::TyVid::from_u32(0)).into())
.chain(projection_ty.substs.iter().skip(1)),
);
let quiet_projection_ty =
tcx.mk_alias_ty(projection_ty.def_id, substs_with_infer_self);
let term = pred.skip_binder().term;
let obligation = format!("{projection_ty} = {term}");
let quiet = format!("{quiet_projection_ty} = {term}");
bound_span_label(projection_ty.self_ty(), &obligation, &quiet);
Some((obligation, projection_ty.self_ty()))
}
ty::PredicateKind::Clause(ty::Clause::Trait(poly_trait_ref)) => {
let p = poly_trait_ref.trait_ref;
let self_ty = p.self_ty();
let path = p.print_only_trait_path();
let obligation = format!("{self_ty}: {path}");
let quiet = format!("_: {path}");
bound_span_label(self_ty, &obligation, &quiet);
Some((obligation, self_ty))
}
_ => None,
}
};
// FIXME(fmease): `rustc_hir_typeck::method::suggest` uses a `skip_list` to filter out some bounds.
// I would do the same here if it didn't mean more code duplication.
let mut bounds: Vec<_> = unsatisfied_predicates
.into_iter()
.filter_map(format_pred)
.map(|(p, _)| format!("`{}`", p))
.collect();
bounds.sort();
bounds.dedup();
let mut err = tcx.sess.struct_span_err(
name.span,
&format!("the associated type `{name}` exists for `{self_ty}`, but its trait bounds were not satisfied")
);
if !bounds.is_empty() {
err.note(&format!(
"the following trait bounds were not satisfied:\n{}",
bounds.join("\n")
));
}
err.span_label(
name.span,
format!("associated type cannot be referenced on `{self_ty}` due to unsatisfied trait bounds")
);
bound_spans.sort();
bound_spans.dedup();
for (span, msg) in bound_spans {
if !tcx.sess.source_map().is_span_accessible(span) {
continue;
}
err.span_label(span, &msg);
}
add_def_label(&mut err);
err.emit()
}
/// When there are any missing associated types, emit an E0191 error and attempt to supply a
/// reasonable suggestion on how to write it. For the case of multiple associated types in the
/// same trait bound have the same name (as they come from different supertraits), we instead

View File

@ -27,7 +27,10 @@ use rustc_hir::def::{CtorOf, DefKind, Namespace, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::intravisit::{walk_generics, Visitor as _};
use rustc_hir::{GenericArg, GenericArgs, OpaqueTyOrigin};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{InferCtxt, InferOk, TyCtxtInferExt};
use rustc_infer::traits::ObligationCause;
use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind};
use rustc_middle::middle::stability::AllowUnstable;
use rustc_middle::ty::subst::{self, GenericArgKind, InternalSubsts, SubstsRef};
use rustc_middle::ty::DynKind;
@ -40,11 +43,12 @@ use rustc_span::symbol::{kw, Ident, Symbol};
use rustc_span::{sym, Span, DUMMY_SP};
use rustc_target::spec::abi;
use rustc_trait_selection::traits;
use rustc_trait_selection::traits::astconv_object_safety_violations;
use rustc_trait_selection::traits::error_reporting::{
report_object_safety_error, suggestions::NextTypeParamName,
};
use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
use rustc_trait_selection::traits::wf::object_region_bounds;
use rustc_trait_selection::traits::{astconv_object_safety_violations, NormalizeExt};
use smallvec::{smallvec, SmallVec};
use std::collections::BTreeSet;
@ -2043,23 +2047,15 @@ impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
}
}
// see if we can satisfy using an inherent associated type
for &impl_ in tcx.inherent_impls(adt_def.did()) {
let Some(assoc_ty_did) = self.lookup_assoc_ty(assoc_ident, hir_ref_id, span, impl_) else {
continue;
};
let ty::Adt(_, adt_substs) = qself_ty.kind() else {
// FIXME(inherent_associated_types)
bug!("unimplemented: non-adt self of inherent assoc ty");
};
let item_substs = self.create_substs_for_associated_item(
span,
assoc_ty_did,
assoc_segment,
adt_substs,
);
let ty = tcx.type_of(assoc_ty_did).subst(tcx, item_substs);
return Ok((ty, DefKind::AssocTy, assoc_ty_did));
if let Some((ty, did)) = self.lookup_inherent_assoc_ty(
assoc_ident,
assoc_segment,
adt_def.did(),
qself_ty,
hir_ref_id,
span,
)? {
return Ok((ty, DefKind::AssocTy, did));
}
}
@ -2202,6 +2198,196 @@ impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
Ok((ty, DefKind::AssocTy, assoc_ty_did))
}
fn lookup_inherent_assoc_ty(
&self,
name: Ident,
segment: &hir::PathSegment<'_>,
adt_did: DefId,
self_ty: Ty<'tcx>,
block: hir::HirId,
span: Span,
) -> Result<Option<(Ty<'tcx>, DefId)>, ErrorGuaranteed> {
let tcx = self.tcx();
let candidates: Vec<_> = tcx
.inherent_impls(adt_did)
.iter()
.filter_map(|&impl_| Some((impl_, self.lookup_assoc_ty_unchecked(name, block, impl_)?)))
.collect();
if candidates.is_empty() {
return Ok(None);
}
let cause = ObligationCause::misc(span, block.owner.def_id);
let mut unsatisfied_predicates = Vec::new();
for &(impl_, (assoc_item, def_scope)) in &candidates {
let infcx = tcx.infer_ctxt().ignoring_regions().build();
let param_env = tcx.param_env(impl_);
let impl_ty = tcx.type_of(impl_);
let impl_substs = self.fresh_item_substs(impl_, &infcx);
let impl_ty = impl_ty.subst(tcx, impl_substs);
let InferOk { value: impl_ty, obligations } =
infcx.at(&cause, param_env).normalize(impl_ty);
// Check that the Self-types can be related.
let Ok(InferOk { obligations: sub_obligations, value: () }) = infcx
.at(&ObligationCause::dummy(), param_env)
.define_opaque_types(false)
.sup(impl_ty, self_ty)
else {
continue;
};
// Check whether the impl imposes obligations we have to worry about.
let impl_bounds = tcx.predicates_of(impl_);
let impl_bounds = impl_bounds.instantiate(tcx, impl_substs);
let InferOk { value: impl_bounds, obligations: norm_obligations } =
infcx.at(&cause, param_env).normalize(impl_bounds);
let impl_obligations =
traits::predicates_for_generics(|_, _| cause.clone(), param_env, impl_bounds);
let candidate_obligations = impl_obligations
.chain(norm_obligations.into_iter())
.chain(obligations.iter().cloned());
let mut matches = true;
// Evaluate those obligations to see if they might possibly hold.
for o in candidate_obligations {
let o = infcx.resolve_vars_if_possible(o);
if !infcx.predicate_may_hold(&o) {
matches = false;
unsatisfied_predicates.push(o.predicate);
}
}
// Evaluate those obligations to see if they might possibly hold.
for o in sub_obligations {
let o = infcx.resolve_vars_if_possible(o);
if !infcx.predicate_may_hold(&o) {
matches = false;
unsatisfied_predicates.push(o.predicate);
}
}
if !matches {
continue;
}
self.check_assoc_ty(assoc_item, name, def_scope, block, span);
let ty::Adt(_, adt_substs) = self_ty.kind() else {
bug!("unreachable: `lookup_inherent_assoc_ty` is only called on ADTs");
};
let item_substs =
self.create_substs_for_associated_item(span, assoc_item, segment, adt_substs);
// FIXME(inherent_associated_types): Check if the obligations arising from the
// where-clause & the bounds on the associated type and its parameters hold.
let ty = tcx.type_of(assoc_item).subst(tcx, item_substs);
return Ok(Some((ty, assoc_item)));
}
Err(self.complain_about_inherent_assoc_type_not_found(
name,
self_ty,
&candidates.into_iter().map(|(impl_, _)| impl_).collect::<Vec<_>>(),
unsatisfied_predicates,
span,
))
}
// FIXME(fmease): Copied from `rustc_hir_typeck::method::probe`. Deduplicate.
fn fresh_item_substs(&self, def_id: DefId, infcx: &InferCtxt<'tcx>) -> SubstsRef<'tcx> {
let tcx = self.tcx();
InternalSubsts::for_item(tcx, def_id, |param, _| match param.kind {
GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. } => infcx
.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::SubstitutionPlaceholder,
span: tcx.def_span(def_id),
})
.into(),
GenericParamDefKind::Const { .. } => {
let span = tcx.def_span(def_id);
let origin = ConstVariableOrigin {
kind: ConstVariableOriginKind::SubstitutionPlaceholder,
span,
};
infcx
.next_const_var(
tcx.type_of(param.def_id)
.no_bound_vars()
.expect("const parameter types cannot be generic"),
origin,
)
.into()
}
})
}
fn lookup_assoc_ty(
&self,
name: Ident,
block: hir::HirId,
span: Span,
scope: DefId,
) -> Option<DefId> {
let (item, def_scope) = self.lookup_assoc_ty_unchecked(name, block, scope)?;
self.check_assoc_ty(item, name, def_scope, block, span);
Some(item)
}
fn lookup_assoc_ty_unchecked(
&self,
name: Ident,
block: hir::HirId,
scope: DefId,
) -> Option<(DefId, DefId)> {
let tcx = self.tcx();
let (ident, def_scope) = tcx.adjust_ident_and_get_scope(name, scope, block);
// We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
// of calling `find_by_name_and_kind`.
let item = tcx.associated_items(scope).in_definition_order().find(|i| {
i.kind.namespace() == Namespace::TypeNS
&& i.ident(tcx).normalize_to_macros_2_0() == ident
})?;
Some((item.def_id, def_scope))
}
fn check_assoc_ty(
&self,
item: DefId,
name: Ident,
def_scope: DefId,
block: hir::HirId,
span: Span,
) {
let tcx = self.tcx();
let kind = DefKind::AssocTy;
if !tcx.visibility(item).is_accessible_from(def_scope, tcx) {
let kind = kind.descr(item);
let msg = format!("{kind} `{name}` is private");
let def_span = tcx.def_span(item);
tcx.sess
.struct_span_err_with_code(span, &msg, rustc_errors::error_code!(E0624))
.span_label(span, &format!("private {kind}"))
.span_label(def_span, &format!("{kind} defined here"))
.emit();
}
tcx.check_stability(item, Some(block), span, None);
}
fn probe_traits_that_match_assoc_ty(
&self,
qself_ty: Ty<'tcx>,
@ -2255,39 +2441,6 @@ impl<'o, 'tcx> dyn AstConv<'tcx> + 'o {
.collect()
}
fn lookup_assoc_ty(
&self,
ident: Ident,
block: hir::HirId,
span: Span,
scope: DefId,
) -> Option<DefId> {
let tcx = self.tcx();
let (ident, def_scope) = tcx.adjust_ident_and_get_scope(ident, scope, block);
// We have already adjusted the item name above, so compare with `ident.normalize_to_macros_2_0()` instead
// of calling `find_by_name_and_kind`.
let item = tcx.associated_items(scope).in_definition_order().find(|i| {
i.kind.namespace() == Namespace::TypeNS
&& i.ident(tcx).normalize_to_macros_2_0() == ident
})?;
let kind = DefKind::AssocTy;
if !item.visibility(tcx).is_accessible_from(def_scope, tcx) {
let kind = kind.descr(item.def_id);
let msg = format!("{kind} `{ident}` is private");
let def_span = self.tcx().def_span(item.def_id);
tcx.sess
.struct_span_err_with_code(span, &msg, rustc_errors::error_code!(E0624))
.span_label(span, &format!("private {kind}"))
.span_label(def_span, &format!("{kind} defined here"))
.emit();
}
tcx.check_stability(item.def_id, Some(block), span, None);
Some(item.def_id)
}
fn qpath_to_ty(
&self,
span: Span,

View File

@ -0,0 +1,35 @@
// check-pass
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
// Check that inherent associated types are dispatched on the concrete Self type.
struct Select<T>(T);
impl Select<u8> {
type Projection = ();
}
impl Select<String> {
type Projection = bool;
}
struct Choose<T>(T);
struct NonCopy;
impl<T: Copy> Choose<T> {
type Result = Vec<T>;
}
impl Choose<NonCopy> {
type Result = ();
}
fn main() {
let _: Select<String>::Projection = false;
let _: Select<u8>::Projection = ();
let _: Choose<NonCopy>::Result = ();
let _: Choose<&str>::Result = vec!["..."];
}

View File

@ -0,0 +1,39 @@
// check-pass
#![feature(inherent_associated_types, auto_traits, negative_impls)]
#![allow(incomplete_features)]
use std::cmp::Ordering;
// Check that inherent associated types are dispatched on the concrete Self type.
struct Select<T, U>(T, U);
impl<T: Ordinary, U: Ordinary> Select<T, U> {
type Type = ();
}
impl<T: Ordinary> Select<T, Special> {
type Type = bool;
}
impl<T: Ordinary> Select<Special, T> {
type Type = Ordering;
}
impl Select<Special, Special> {
type Type = (bool, bool);
}
fn main() {
let _: Select<String, Special>::Type = false;
let _: Select<Special, Special>::Type = (true, false);
let _: Select<Special, u8>::Type = Ordering::Equal;
let _: Select<i128, ()>::Type = ();
}
enum Special {}
impl !Ordinary for Special {}
auto trait Ordinary {}

View File

@ -0,0 +1,17 @@
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Parameterized<T, U>(T, U);
impl Parameterized<(), ()> {
type Output = bool;
}
impl<T> Parameterized<bool, T> {
type Result = T;
}
fn main() {
let _: Parameterized<(), ()>::Output = String::new(); //~ ERROR mismatched types
let _: Parameterized<bool, u32>::Result = (); //~ ERROR mismatched types
}

View File

@ -0,0 +1,19 @@
error[E0308]: mismatched types
--> $DIR/dispatch-on-self-type-2.rs:15:44
|
LL | let _: Parameterized<(), ()>::Output = String::new();
| ----------------------------- ^^^^^^^^^^^^^ expected `bool`, found `String`
| |
| expected due to this
error[E0308]: mismatched types
--> $DIR/dispatch-on-self-type-2.rs:16:47
|
LL | let _: Parameterized<bool, u32>::Result = ();
| -------------------------------- ^^ expected `bool`, found `()`
| |
| expected due to this
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0308`.

View File

@ -0,0 +1,16 @@
error[E0220]: associated type `Proj` not found for `Family<Option<()>>` in the current scope
--> $DIR/not-found-self-type-differs.rs:17:34
|
LL | struct Family<T>(T);
| ---------------- associated item `Proj` not found for this struct
...
LL | type Alias = Family<Option<()>>::Proj;
| ^^^^ associated item not found in `Family<Option<()>>`
|
= note: the associated type was found for
- `Family<()>`
- `Family<Result<T, ()>>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.

View File

@ -0,0 +1,16 @@
error[E0220]: associated type `Proj` not found for `Family<PathBuf>` in the current scope
--> $DIR/not-found-self-type-differs.rs:21:40
|
LL | struct Family<T>(T);
| ---------------- associated item `Proj` not found for this struct
...
LL | let _: Family<std::path::PathBuf>::Proj = ();
| ^^^^ associated item not found in `Family<PathBuf>`
|
= note: the associated type was found for
- `Family<()>`
- `Family<Result<T, ()>>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.

View File

@ -0,0 +1,22 @@
// revisions: local alias
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Family<T>(T);
impl Family<()> {
type Proj = ();
}
impl<T> Family<Result<T, ()>> {
type Proj = Self;
}
#[cfg(alias)]
type Alias = Family<Option<()>>::Proj; //[alias]~ ERROR associated type `Proj` not found for `Family<Option<()>>`
fn main() {
#[cfg(local)]
let _: Family<std::path::PathBuf>::Proj = (); //[local]~ ERROR associated type `Proj` not found for `Family<PathBuf>`
}

View File

@ -0,0 +1,21 @@
// Regression test for issue #104251.
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Container<T: ?Sized>(T);
impl<T> Container<T> {
type Yield = i32;
}
struct Duple<T, U>(T, U);
impl<T: Copy, U: Send> Duple<T, U> {
type Combination = (T, U);
}
fn main() {
let _: Container<[u8]>::Yield = 1; //~ ERROR the associated type `Yield` exists for `Container<[u8]>`, but its trait bounds were not satisfied
let _: Duple<String, std::rc::Rc<str>>::Combination; //~ ERROR the associated type `Combination` exists for `Duple<String, Rc<str>>`, but its trait bounds were not satisfied
}

View File

@ -0,0 +1,27 @@
error: the associated type `Yield` exists for `Container<[u8]>`, but its trait bounds were not satisfied
--> $DIR/not-found-unsatisfied-bounds.rs:19:29
|
LL | struct Container<T: ?Sized>(T);
| --------------------------- associated item `Yield` not found for this struct
...
LL | let _: Container<[u8]>::Yield = 1;
| ^^^^^ associated type cannot be referenced on `Container<[u8]>` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`[u8]: Sized`
error: the associated type `Combination` exists for `Duple<String, Rc<str>>`, but its trait bounds were not satisfied
--> $DIR/not-found-unsatisfied-bounds.rs:20:45
|
LL | struct Duple<T, U>(T, U);
| ------------------ associated item `Combination` not found for this struct
...
LL | let _: Duple<String, std::rc::Rc<str>>::Combination;
| ^^^^^^^^^^^ associated type cannot be referenced on `Duple<String, Rc<str>>` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`Rc<str>: Send`
`String: Copy`
error: aborting due to 2 previous errors