node-oracledb/examples/vectorSparse.js

187 lines
6.7 KiB
JavaScript

/* Copyright (c) 2025, Oracle and/or its affiliates. */
/******************************************************************************
*
* This software is dual-licensed to you under the Universal Permissive License
* (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
* 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
* either license.
*
* If you elect to accept the software under the Apache License, Version 2.0,
* the following applies:
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* NAME
* vectortypesparse.js
*
* DESCRIPTION
* Insert and query SPARSE VECTOR columns.
*
*
*****************************************************************************/
'use strict';
Error.stackTraceLimit = 50;
const oracledb = require('oracledb');
const assert = require('assert');
const dbConfig = require('./dbconfig.js');
const tableName = 'testvectorsparse';
if (process.env.NODE_ORACLEDB_DRIVER_MODE === 'thick') {
let clientOpts = {};
// On Windows and macOS Intel platforms, set the environment
// variable NODE_ORACLEDB_CLIENT_LIB_DIR to the Oracle Client library path
if (process.platform === 'win32' || (process.platform === 'darwin' && process.arch === 'x64')) {
clientOpts = { libDir: process.env.NODE_ORACLEDB_CLIENT_LIB_DIR };
}
oracledb.initOracleClient(clientOpts); // enable node-oracledb Thick mode
}
oracledb.outFormat = oracledb.OUT_FORMAT_OBJECT;
async function run() {
const connection = await oracledb.getConnection(dbConfig);
try {
let result;
const serverVersion = connection.oracleServerVersion;
if (serverVersion < 2306000000) {
console.log(`DB version ${serverVersion} does not support VECTOR type`);
return;
}
console.log('Creating table');
await connection.execute(`DROP TABLE if exists ${tableName}`);
await connection.execute(`CREATE TABLE ${tableName} (id NUMBER GENERATED ALWAYS AS IDENTITY,
sparseF64 VECTOR(4, float64, SPARSE), sparseFlexF64 VECTOR(*, float64, SPARSE),
denseF64 VECTOR(2, float64), denseFlexF64 VECTOR(*, float64))`);
const arr = [39, -65];
const queryVector = new Float64Array([39, -65]);
const float64arr1 = new Float64Array(arr);
const float64arr2 = new Float64Array([-34, 23]);
const float64arr3 = new Float64Array([-34, 23, 32, 12]);
const sparseString = '[4, [1, 3], [39, -65]]'; // totalDims, indexArray, valueArray.
let sparsevec = new oracledb.SparseVector({ values: float64arr1, indices: [1, 3], numDimensions: 4 });
const binds = {
sparse: { type: oracledb.DB_TYPE_VECTOR, val: sparsevec },
dense: { type: oracledb.DB_TYPE_VECTOR, val: float64arr2 }
};
const denseArray = sparsevec.dense();
console.log(' dense vector ', denseArray);
console.log('Inserting SparseVector instance created from POJO');
result = await connection.execute(`insert into ${tableName} values(DEFAULT, :1, :2, :3, :4)`,
[
sparsevec,
sparsevec,
float64arr1,
float64arr1
]);
console.log('Inserting string data of sparse format');
result = await connection.execute(`insert into ${tableName} values(DEFAULT, :sparse, :sparse, :dense, :dense)`,
[sparseString, sparseString, float64arr1, float64arr1]);
console.log('Inserting SparseVector instance created from string');
sparsevec = new oracledb.SparseVector(sparseString);
result = await connection.execute(`insert into ${tableName} values(DEFAULT, :1, :2, :3, :4)`,
[
sparsevec,
sparsevec,
float64arr1,
float64arr1
]);
console.log('Inserting SparseVector instance created from dense Array');
sparsevec = new oracledb.SparseVector(denseArray);
result = await connection.execute(`insert into ${tableName} values(DEFAULT, :1, :2, :3, :4)`,
[
sparsevec,
sparsevec,
float64arr1,
float64arr1
]);
console.log('Inserting Dense vector into Sparse Flex dimensions column');
let sql = `insert into ${tableName} values(DEFAULT, :sparse, :dense, :dense, :dense)`;
result = await connection.execute(sql, binds);
console.log('Inserting Sparse vector into Dense Flex dimensions column');
sql = `insert into ${tableName} values(DEFAULT, :sparse, :sparse, :dense, :sparse)`;
result = await connection.execute(sql, binds);
console.log('Query Results:');
result = await connection.execute(
`select * from ${tableName} ORDER BY id`);
console.log("Query metadata:", result.metaData);
for (const val of result.rows) {
console.log("Query rows:", JSON.stringify(val));
}
// Inserting Dense vector of different dimensions into Sparse Fixed dimensions column
sql = `insert into ${tableName} values(DEFAULT, :dense, :sparse, :dense, :dense)`;
await assert.rejects(
async () => await connection.execute(sql,
{
sparse: { type: oracledb.DB_TYPE_VECTOR, val: sparsevec },
dense: { type: oracledb.DB_TYPE_VECTOR, val: float64arr2 }
}
),
/ORA-51803:/
);
// Inserting Dense vector of same dimensions into Sparse Fixed dimensions column
sql = `insert into ${tableName} values(DEFAULT, :dense, :sparse, :dense, :dense)`;
await assert.rejects(
async () => await connection.execute(sql,
{
sparse: { type: oracledb.DB_TYPE_VECTOR, val: sparsevec },
dense: { type: oracledb.DB_TYPE_VECTOR, val: float64arr3 }
}
),
/ORA-51803:/
);
// Inserting Sparse vector into Dense Fixed dimensions column
sql = `insert into ${tableName} values(DEFAULT, :sparse, :sparse, :sparse, :dense)`;
await assert.rejects(
async () => await connection.execute(sql, binds),
/ORA-51803:/
);
const sparseQueryVec = new oracledb.SparseVector({ values: queryVector, indices: [2, 3], numDimensions: 4 });
console.log('vector distance with Query ', queryVector);
console.log(await connection.execute(`select vector_distance (sparseF64, :1) from ${tableName}`, [sparseQueryVec]));
} catch (err) {
console.error(err);
} finally {
if (connection) {
try {
await connection.close();
} catch (err) {
console.error(err);
}
}
}
}
run();